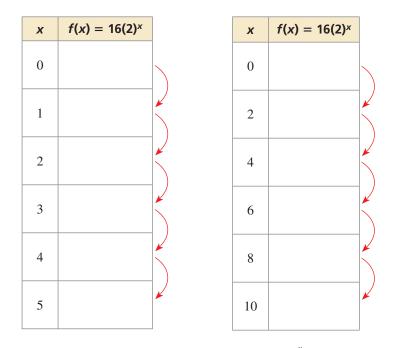
6.3 Exponential Functions

Learning Target:	Graph and write exponential functions.
Success Criteria:	 I can identify an exponential function. I can evaluate and graph an exponential function. I can identify characteristics of exponential functions. I can solve real-life problems using exponential functions.

EXPLORE IT! Understanding Exponential Functions

Work with a partner. An exponential function is a nonlinear function of the form $y = ab^x$, where $a \neq 0, b \neq 1$, and b > 0.

a. Consider the exponential function $f(x) = 16(2)^x$. Complete each table. What do you notice about consecutive values of *x* in each table? What do you notice about consecutive values of f(x)?



b. Repeat part (a) for the exponential function $g(x) = 16\left(\frac{1}{2}\right)^x$. Do you think the statement below is true for *any* exponential function? Explain your reasoning.

"As the independent variable x changes by a constant amount, the dependent variable y is multiplied by a constant factor."

c. Sketch the graphs of the functions given in parts (a) and (b). How are the graphs similar? How are they different?

Algebraic Reasoning

MA.912.AR.5.6 Given a table, equation or written description of an exponential function, graph that function and determine its key features.

Functions

MA.912.F.1.1 Given an equation or graph that defines a function, determine the function type. Given an input-output table, determine a function type that could represent it.

Identifying and Evaluating **Exponential Functions**

Vocabulary VOCAB

STUDY TIP

ratios.

In Example 1(b), consecutive

y-values form equivalent

 $\frac{8}{4} = 2, \frac{16}{8} = 2, \frac{32}{16} = 2$

exponential function, p. 302 asymptote, p. 303

AZ

An **exponential function** is a nonlinear function of the form $y = ab^x$, where $a \neq 0$, $b \neq 1$, and b > 0. As the independent variable x changes by a constant amount, the dependent variable y is multiplied by a constant factor, which means consecutive y-values form equivalent ratios.

b.

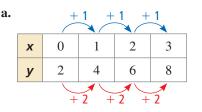
EXAMPLE 1

Does each table represent a *linear* or an *exponential* function? Explain.

a.	x	0	1	2	3
	у	2	4	6	8

x	0	1	2	3
у	4	8	16	32

SOLUTION



b.		+1 $+1$ $+1$					
	x	0	1	2	3		
	у	4	8	16	32		
	$\times 2 \times 2 \times 2$						

As x increases by 1, y is multiplied by 2. So, the function is exponential.

As x increases by 1, y increases by 2. The rate of change is constant. So, the function is linear.

Evaluating Exponential Functions

4 I can teach someone else.

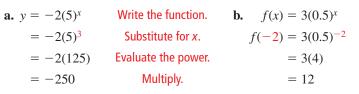
Evaluate each function for the given value of x.

a.
$$y = -2(5)^x$$
; $x = 3$

b. $f(x) = 3(0.5)^x$; x = -2

3 I can do it on my own.

SOLUTION



I can do it with help.

SELF-ASSESSMENT

Does the table represent a linear or an exponential function? Explain.

1 I don't understand yet.

۱.	x	0	1	2	3
	у	8	4	2	1

2.	x	-4	0	4	8
	у	1	0	-1	-2

Evaluate the function when x = -2, 0, and $\frac{1}{2}$.

3.
$$y = 2(9)^x$$

1.
$$f(x) = 1.5(2)$$

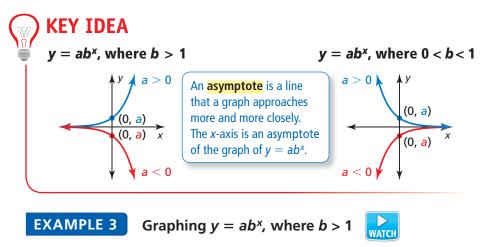
2

5.
$$g(x) = -3\left(\frac{1}{4}\right)^x$$

6. **REASONING** For each function in Example 2, what happens to the y-values as $x \to +\infty$? as $x \to -\infty$? Explain.

Graphing Exponential Functions

The graph of a function $y = ab^x$ is a vertical stretch or shrink by a factor of |a| of the graph of the parent function $y = b^x$. When a < 0, the graph is also reflected in the *x*-axis. The *y*-intercept of the graph of $y = ab^x$ is *a*.



Graph $f(x) = 4(2)^x$. Compare the graph to the graph of the parent function. Identify the *y*-intercepts and asymptotes of the graphs. Find the domain and range of *f*.

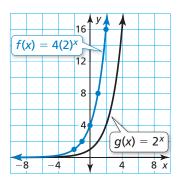
SOLUTION

Step 1 Make a table of values.

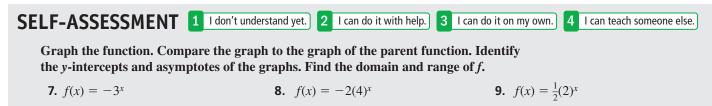
x	-2	-1	0	1	2
f(x)	1	2	4	8	16

Step 2 Plot the ordered pairs.

Step 3 Draw a smooth curve through the points.



The parent function is $g(x) = 2^x$. The graph of *f* is a vertical stretch by a factor of 4 of the graph of *g*. The *y*-intercept of the graph of *f*, 4, is greater than the *y*-intercept of the graph of *g*, 1. The *x*-axis is an asymptote of both the graphs of *f* and *g*. From the graph of *f*, you can see that the domain is all real numbers and the range is y > 0.



10. OPEN-ENDED Sketch an increasing exponential function whose graph has a *y*-intercept of 2.

HELP A

end behavior of *f*.

CLASSMATE

Explain to a classmate how to determine the

MTR

Graphing $y = ab^x$, when 0 < b < 1

Graph $f(x) = -\left(\frac{1}{2}\right)^x$. Compare the graph to the graph of the parent function. Identify the *y*-intercepts and asymptotes of the graphs. Find the domain and range of *f*.

SOLUTION

- **Step 1** Make a table of values.
- Step 2 Plot the ordered pairs.
- Step 3 Draw a smooth curve through the points.

x	-2	-1	0	1	2
f(x)	-4	-2	-1	$-\frac{1}{2}$	$-\frac{1}{4}$

The parent function is $g(x) = \left(\frac{1}{2}\right)^x$. The graph of *f* is a reflection in the *x*-axis of the graph of *g*. The *y*-intercept of the graph of *f*, -1, is less than the *y*-intercept of the graph of *g*, 1. The *x*-axis is an asymptote of both the graphs of *f* and *g*. From the graph of *f*, you can see that the domain is all real numbers and the range is y < 0.

EXAMPLE 5 B.E.S.T. Test Prep: Identifying Characteristics

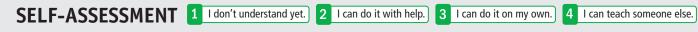
Which statement about the functions in Example 4 is false?

- (\mathbf{A}) f is increasing and negative over its entire domain.
- (\mathbf{B}) g is decreasing and positive over its entire domain.
- \bigcirc $f(x) \to -\infty$ as $x \to -\infty$ and $f(x) \to +\infty$ as $x \to +\infty$
- (D) $g(x) \to +\infty$ as $x \to -\infty$ and $g(x) \to 0$ as $x \to +\infty$
- (E) The line y = 0 is an asymptote of the graphs of f and g.

SOLUTION

The functions are of the form $y = ab^x$, so the asymptote of each graph is the *x*-axis, or y = 0. The graphs show that

- *f* is increasing and negative over its entire domain.
- *g* is decreasing and positive over its entire domain.
- f(x) decreases as x approaches negative infinity, and f(x) approaches 0 as x approaches positive infinity. So, $f(x) \to -\infty$ as $x \to -\infty$ and $f(x) \to 0$ as $x \to +\infty$.
- g(x) increases as x approaches negative infinity, and g(x) approaches 0 as x approaches positive infinity. So, g(x) → +∞ as x → -∞ and g(x) → 0 as x → +∞.
- So, **(C)** is false.



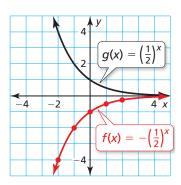
Graph the function. Compare the graph to the graph of the parent function. Identify the *y*-intercepts and asymptotes of the graphs. Find the domain and range of *f*.

12. $f(x) = 2\left(\frac{1}{4}\right)^x$

11. $f(x) = \left(\frac{1}{3}\right)^x$

13. $f(x) = -10\left(\frac{1}{2}\right)^x$

- 14. **REASONING** Explain why the graph of an exponential function is not a line.
- **15.** Determine when $f(x) = 0.5(4)^x$ is positive, negative, increasing, or decreasing. Then describe the end behavior of the function.



WATCH

Solving Real-Life Problems

that the base of the power in the function is 0.9?

> Climate concerns, such as increasing sea level, are

> expected to decrease coastal property values in

Florida and other states

over time.

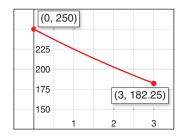
A real-estate researcher estimates that a coastal property in Florida will lose about 10% of its value each decade from 2020 to 2050. The function $f(x) = 250(0.9)^x$ represents the estimated value (in thousands of dollars) of the property *x* decades after 2020.

- **a.** Graph *f*. Find the domain and range.
- **b.** What is the estimated decrease in property value from 2020 to 2050?

SOLUTION

7 MTR

a. The function is defined for the years 2020 to 2050, which represent 3 decades. So, use technology to graph the function for $0 \le x \le 3$.



The greatest y-value is f(0) = 250, and the least y-value is f(3) = 182.25.

- So, the domain is $\{x \mid 0 \le x \le 3\}$ and the range is $\{f(x) \mid 182.25 \le f(x) \le 250\}$.
- **b.** The estimated value of the property in 2020 is \$250,000. The estimated value of the property in 2050 is \$182,250.

I can do it on my own.

4

I can teach someone else.

So, the estimated decrease in property value from 2020 to 2050 is \$250,000 - \$182,250 = \$67,750.

3

2 I can do it with help.

SELF-ASSESSMENT 1 I don't understand yet.

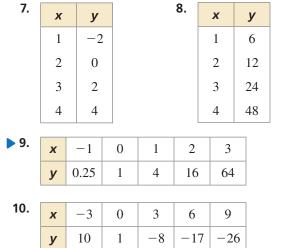
- **16.** An entomologist expects an insect population to increase by about 20% each month from May 1 to September 1. The function $f(x) = 100(1.2)^x$ represents the estimated population (in thousands) *x* months after May 1.
 - **a.** Graph *f*. Find the domain and range.
 - **b.** What is the estimated increase in population from May 1 to September 1?
- **17.** WHAT IF? In Example 6, the researcher uses new information to update the function to $g(x) = 250(0.88)^x$. Does the property lose more or less value by 2050? How much more or less?

6.3 Practice with CalcChat® AND CalcView®

In Exercises 1–6, determine whether the equation represents an exponential function. Explain.

- 1. $y = (0.5)^{x+8}$ 2. y = x+63. $y = (x-7)^3$ 4. $y = -2^x$ 5. $y = (0.5)^x 4$ 6. $y = \left(\frac{1}{2}\right)^x$
- In Exercises 7–10, determine whether the table represents a *linear* or an *exponential* function. Explain.

(See Example 1.)



In Exercises 11–18, evaluate the function for the given value of *x*. (See Example 2.)

11.	$y = 3^x; x = 2$	12.	$f(x) = 3(2)^x; \ x = -1$
13.	$y = -4(5)^x; x = 2$	14.	$f(x) = 0.5^x; \ x = -3$
> 15.	$f(x) = \frac{1}{3}(6)^x; x = 3$	16.	$y = \frac{1}{4}(4)^x; \ x = \frac{3}{2}$
17.	$f(x) = -18(9)^x; \ x = -$	$-\frac{1}{2}$	
18.	$f(x) = 8(8)^x; \ x = \frac{1}{3}$		

In Exercises 19 and 20, the table represents an exponential function. Graph the function.

19.	x	у	20.	x	У
	-2	1		1	$-\frac{1}{3}$
	-1	2		3	-3
	0	4		5	-27
	1	8		7	-243

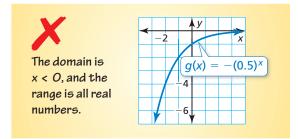
21. $f(x) = 8^x$ **22.** $f(x) = 3(6)^x$ **23.** $f(x) = -4^x$ **24.** $f(x) = -2(7)^x$ **25.** $f(x) = 3(0.5)^x$ **26.** $f(x) = 6\left(\frac{1}{3}\right)^x$

- **27.** $f(x) = \frac{1}{2}(8)^x$ **28.** $f(x) = \frac{3}{2}(0.25)^x$
- **29.** $f(x) = 2\left(\frac{3}{4}\right)^x$ **30.** $f(x) = 4(0.8)^x$
- **31. ERROR ANALYSIS** Describe and correct the error in finding the domain and range of *g*.

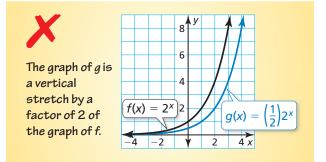
In Exercises 21–30, graph the function. Compare the

graph to the graph of the parent function. Identify the y-intercepts and asymptotes of the graphs. Find

the domain and range of f. (See Examples 3 and 4.)



32. ERROR ANALYSIS Describe and correct the error in comparing the graph of *g* to the graph of the parent function *f*.



In Exercises 33–38, determine when the function is positive, negative, increasing, or decreasing. Then describe the end behavior of the function. (See Example 5.)

- **33.** $y = -9^x$ **34.** $f(x) = 7(5)^x$
- **35.** $g(x) = \frac{2}{3}(0.2)^x$ **36.** $y = -4\left(\frac{1}{6}\right)^x$

37.
$$y = -3\left(\frac{2}{7}\right)^x$$
 38. $h(x) = 3(1.5)^x$

In Exercises 39–44, describe values of *a* and *b* for which the function $f(x) = ab^x$ meets the given requirement(s).

- **39.** f is positive for its entire domain
- **40.** *f* is negative for its entire domain
- **41.** f is increasing for its entire domain
- **42.** *f* is decreasing for its entire domain
- **43.** $f(x) \to -\infty$ as $x \to -\infty$ and $f(x) \to 0$ as $x \to +\infty$
- **44.** $f(x) \to 0$ as $x \to -\infty$ and $f(x) \to -\infty$ as $x \to +\infty$
- **45.** MODELING REAL LIFE Organizers of the Gasparilla Pirate Festival in Tampa estimate that the parade attracts about 6% more people each year. The function $f(x) = 300(1.06)^x$ represents the estimated number of people (in thousands) who attend the parade *x* years after 2020. (*See Example 6.*)

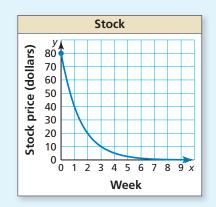
- **a.** Graph *f*. Find the domain and range.
- **b.** What is the estimated number of people who attend the parade in 2024?
- **46.** MODELING REAL LIFE A cell phone company estimates that a cell phone loses about 15% of its value each year after it is purchased. The function $f(x) = 900(0.85)^x$ represents the estimated value (in dollars) of a cell phone *x* years after its purchase.
 - **a.** Graph *f*. Find the domain and range.
 - **b.** What is the estimated decrease in value 5 years after a cell phone is purchased?
- **47. MODELING REAL LIFE** You are deciding between two jobs. Job A offers \$35,000 with a 5% raise each year. The function $f(x) = 35,000(1.05)^x$ represents the salary of Job A after *x* years. Job B offers \$45,000 with a \$1500 raise each year. The function g(x) = 45,000 + 1500x represents the salary of Job B after *x* years. Which job would you choose if you plan to keep it for no more than 10 years? Explain.
 - **48. REASONING** Explain why *a* is the *y*-intercept of the graph of $y = ab^x$.

5. 49. STRUCTURE Does the table represent a *linear function*, an *exponential function*, or *neither*? Explain.

х		0	1	3	6
У	,	2	10	50	250

50. HOW DO YOU SEE IT?

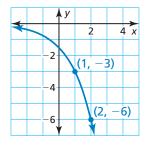
The exponential function y = V(x) represents the projected value of a stock *x* weeks after a corporation loses an important legal battle. The graph of the function is shown.



- **a.** After how many weeks will the stock be worth \$20?
- **b.** Describe the change in the stock price from Week 1 to Week 3.
- **51. REASONING** Determine whether each situation can be represented by a *linear* or an *exponential* function.
 - **a.** A checking account receives a \$500 deposit each month.
 - **b.** The number of people infected by a virus triples each week.
 - **c.** An unpaid credit card balance accrues 1.75% interest each month.
 - **d.** A radio station chooses two new game contestants each day.
- **52. REASONING** Let $f(x) = 3(2)^x$ and g(x) = 3x + 3. Describe when (a) f(x) < g(x), (b) f(x) > g(x), and (c) f(x) = g(x). Justify your answer.

53. STRUCTURE The

graph represents the exponential function f. Find f(3).



- **54.** MAKING AN ARGUMENT Your friend says that for the function $f(x) = -4(\frac{1}{2})^x$, $f(x) \to +\infty$ as $x \to -\infty$ and $f(x) \to 0$ as $x \to +\infty$. Is your friend correct? Explain.
 - **55. REASONING** Is an exponential function always increasing or always decreasing over its entire domain? Explain.

56. THOUGHT PROVOKING

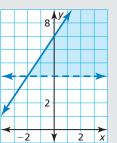
Write an exponential function f so that the slope of a line from the point (0, f(0)) to the point (2, f(2)) is equal to 12.

57. PROBLEM SOLVING A function *g* models a relationship in which the dependent variable is multiplied by 4 for every 2 units the independent variable increases. By what number is the dependent variable multiplied by when the independent variable increases by 1?

REVIEW & REFRESH

In Exercises 59 and 60, write the percent as a decimal.

- **59.** 4% **60.** 128%
- **61.** Write a system of linear inequalities represented by the graph.



In Exercises 62 and 63, use the graphs of *f* and *g* to describe the transformation from the graph of *f* to the graph of *g*.

- **62.** f(x) = -x + 1; g(x) = f(x) 4
- **63.** $f(x) = \frac{1}{2}x 3; g(x) = f(x + 2)$
- **64.** Write an equation in slope-intercept form of the line that passes through (-4, 9) and (16, -6).

In Exercises 65 and 66, evaluate the expression.

65.
$$\left(\frac{1}{32}\right)^{1/5}$$
 66. $(-27)^{5/3}$

67. Write an inequality that represents the graph.

58. DIG DEEPER The graphs of the functions $f(x) = n(2)^x$ and $g(x) = m(5)^x$, where n > 0 and m > 0, are shown. They intersect at the point (p, q).



- **a.** Complete the inequality *n m*. Explain your reasoning.
- **b.** Determine the value of the ratio of f(p + 2) to g(p + 2). Justify your answer.

In Exercises 68 and 69, graph the function. Compare the graph to the graph of the parent function. Identify the *y*-intercepts and asymptotes of the graphs. Find the domain and range of *f*.

68.
$$f(x) = -5^x$$
 69. $f(x) = -\frac{1}{2}(4)^x$

- **70.** Tell whether (8, -1) is a solution of $-\frac{1}{2}x + 3y > -1$.
- **71. MODELING REAL LIFE** There are 430 people in a wave pool. Write an inequality that represents how many more people can enter the pool.

72. Solve the system.

$$y = 4x - 5$$
$$3x + 2y = 12$$

73. WRITING Describe the effect of *a* on the graph of $y = a \cdot 2^x$ when *a* is positive and when *a* is negative.

In Exercises 74 and 75, simplify the expression. Write your answer using only positive exponents.

74.
$$\left(\frac{-5d^4}{9d^0}\right)^3$$
 75. $\left(\frac{4x^{-1}y^3}{-8x^2y^2}\right)^4$

