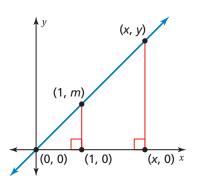

Graphing Proportional Relationships

Learning Target:	Graph proportional relationships.
Success Criteria:	 I can determine whether a linear relationship is a proportional relationship. I can graph an equation that represents a proportional relationship. I can write an equation that represents a proportional relationship. I can use graphs to compare proportional relationships.

Exploration 1 Using a Ratio Table to Find Slope

Work with a partner. The graph shows amounts of vinegar and water that can be used to make a cleaning product.


- a. Use the graph to make a ratio table relating the quantities.Explain how the slope of the line is represented in the table.
- b. Make a ratio table that represents a different ratio of vinegar to water. Use the table to describe the slope of the graph of the new relationship.

Exploration 2 Deriving an Equation

Work with a partner. Let (x, y) represent any point on the graph of a proportional relationship.

- **a.** Describe the relationship between the corresponding side lengths of the triangles shown in the graph. Explain your reasoning.
- **b.** Use the relationship in part (a) to write an equation relating *y*, *m*, and *x*. Then solve the equation for *y*.
- **c.** What does your equation in part (b) describe? What does *m* represent? Explain your reasoning.

Algebraic Reasoning

MA.8.AR.3.1 Determine if a linear relationship is also a proportional relationship.

MA.8.AR.3.4 Given a mathematical or real-world context, graph a two-variable linear equation from a written description, a table or an equation in slope-intercept form.

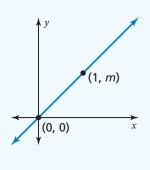
HELP A

Explain to a classmate how you can find the

triangles in the graph.

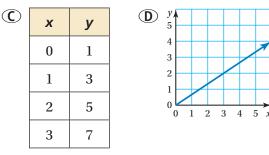
side lengths of the

CLASSMATE


Key Idea

In the equation y = mx, *m* represents the constant of proportionality, the slope, and the unit rate.

 \rightarrow


Proportional Relationships

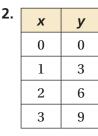
- **Words** When two quantities *x* and *y* are proportional, the relationship can be represented by the equation y = mx, where *m* is the constant of proportionality.
- **Graph** The graph of y = mx is a line with a slope of *m* that passes through the origin.

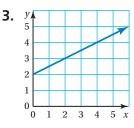
Example 1 B.E.S.T. Test Prep: Identifying Proportional Relationships

Which of the following linear relationships is also a proportional relationship? Select all that apply.

The equation in Choice A is of the form y = mx, where m = 7. The equation in Choice B is not of this form. So, the equation in Choice A represents a proportional relationship, and the equation in Choice B does not.

The points in the table in Choice C lie on a line. Because the line intersects the y-axis at (0, 1), the line does not pass through the origin. So, the table does not represent a proportional relationship.


The graph in Choice D is a line that passes through the origin. So, the graph represents a proportional relationship.


The correct answers are (A) and (D).

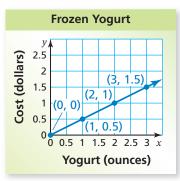
Tell whether x and y are proportional. Explain your reasoning.

1. $y = \frac{1}{3}x$

4 JUSTIFY A RESULT

How can you use ratios to justify that the table in Choice C does not represent a proportional relationship?

Example 2 Graphing Proportional Relationships


Graph the equation for each situation and interpret the slope.

a. The cost y (in dollars) for x ounces of frozen yogurt is represented by y = 0.5x.

One way to graph the equation is to make a table of values.

x	y = 0.5x	У	(x, y)
0	y = 0.5(0)	0	(0, 0)
1	y = 0.5(1)	0.5	(1, 0.5)
2	y = 0.5(2)	1	(2, 1)
3	y = 0.5(3)	1.5	(3, 1.5)

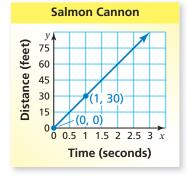
Plot the ordered pairs and draw a line through the points.

- The slope indicates that the unit cost is \$0.50 per ounce.
- b. The distance y (in feet) that a salmon travels in a salmon cannon after x seconds is represented by y = 30x.

One way to graph the equation is to use proportionality and the slope.

The equation represents a proportional relationship because it is of the form y = mx, where m = 30. So, the graph is a line that passes through (0, 0) and (1, 30).

Plot the ordered pairs and draw a line through the points.


The slope indicates that the salmon travels 30 feet per second.

A salmon cannon uses air pressure and a tube to propel salmon across dams, allowing the fish to swim upstream to spawn.

4. WHAT IF? The cost of frozen yogurt is represented by y = 0.75x. Graph the equation and interpret the slope.

ANALYZE A

PROBLEM

Why does it make sense

to graph the equations

in Example 2 in the first

quadrant only?

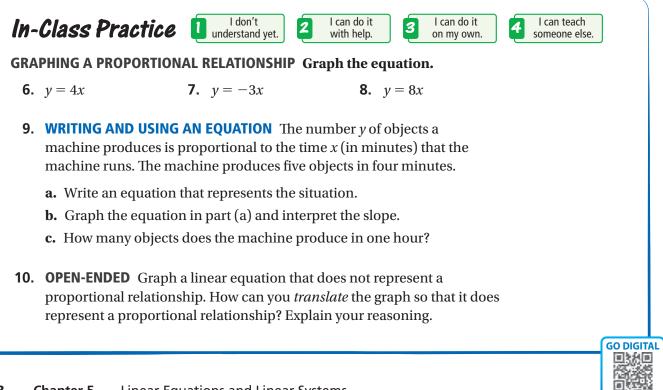
Example 3 Writing and Using an Equation

The weight y of an object on Titan, one of Saturn's moons, is proportional to the weight x of the object on Earth. An object that weighs 105 pounds on Earth would weigh 15 pounds on Titan.

a. Write an equation that represents the situation.

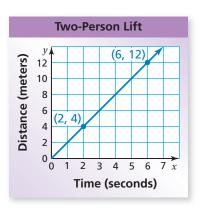
Use the point (105, 15) to find the slope of the line.

y = mx	Equation of a proportional relationship
15 = m(105)	Substitute 15 for <i>y</i> and 105 for <i>x</i> .
$\frac{1}{7} = m$	Simplify.


- So, an equation that represents the situation is $y = \frac{1}{7}x$.
- b. How much would a chunk of ice that weighs 3.5 pounds on Titan weigh on Earth?

$3.5 = \frac{1}{7}x$	Substitute 3.5 for <i>y</i> .
24.5 = x	Multiply each side by 7.

So, the chunk of ice would weigh 24.5 pounds on Earth.


Try It

5. How much would a spacecraft that weighs 3500 kilograms on Earth weigh on Titan?

Example 4 Modeling Real Life

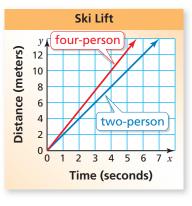
The distance y (in meters) that a four-person ski lift travels in x seconds is represented by the equation y = 2.5x. The graph shows the distance that a two-person ski lift travels.

a. Which ski lift is faster?

Identify the slope of the graph for each lift. Then interpret each slope as a unit rate.

The four-person lift travels 2.5 meters per second.

The two-person lift travels 2 meters per second.

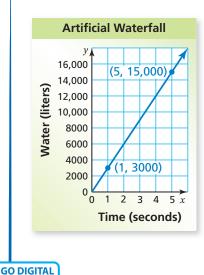

I can do it

on my own.

So, the four-person lift is faster than the two-person lift.

b. Graph the equation that represents the four-person lift in the same coordinate plane as the two-person lift. Compare and interpret the steepness of each graph.

> The graph that represents the four-person lift is steeper than the graph that represents the two-person lift. So, the four-person lift is faster.


I can teach

someone else.

4

In-Class Practice

I don't understand yet.

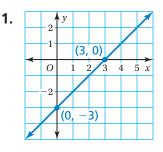
미셨고

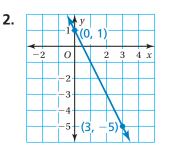
11. The amount *y* (in liters) of water that flows over a natural waterfall in *x* seconds is represented by the equation y = 500x. The graph shows the number of liters of water that flow over an artificial waterfall. Which waterfall has a greater flow? Justify your answer.

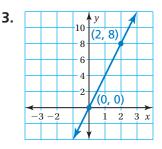
3

I can do it

with help.


- **12.** The speed of sound in air is 343 meters per second. You see lightning and hear thunder 12 seconds later.
 - **a.** Is there a proportional relationship between the amount of time that passes and your distance from a lightning strike? Explain.
 - **b.** Estimate your distance from the lightning strike.



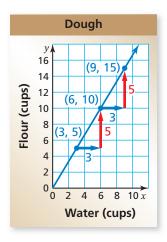

5.3 Practice with CalcChat® AND CalcView®

Review & Refresh

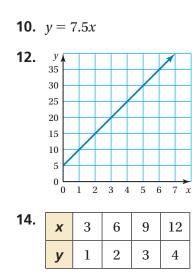
Find the slope of the line.

Solve the equation. Check your solution.

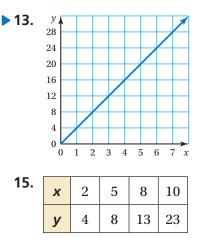
4. 2x + 3x = 10


5. $x + \frac{1}{6} = 4 - 2x$

6.
$$2(1-x) = 11$$

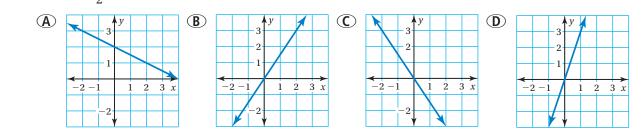

Concepts, Skills, & Problem Solving

USING EQUIVALENT RATIOS The graph shows amounts of water and flour that can be used to make dough. (See Exploration 1.)


- **7.** Use the graph to make a ratio table relating the quantities. Explain how the slope of the line is represented in the table.
- **8.** Make a ratio table that represents a different ratio of flour to water. Use the table to describe the slope of the graph of the new relationship.
- **9. GRAPHING AN EQUATION** The amount *y* (in dollars) that you raise by selling *x* fundraiser tickets is represented by the equation y = 5x. Graph the equation and interpret the slope.

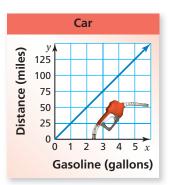
IDENTIFYING PROPORTIONAL RELATIONSHIPS Tell whether *x* and *y* are in a proportional relationship. Explain your reasoning. (See Example 1.)

11. y = 9x - 4



GRAPHING A PROPORTIONAL RELATIONSHIP For the given situation, graph the equation and interpret the slope. (See Example 2.)

- **16.** The total price y (in dollars) for x adults to visit Zoo Miami is represented by y = 23x.
- ▶ 17. During a cross country drill, the distance *y* (in miles) your friend runs in *x* minutes is represented by $y = \frac{1}{10}x$.
 - **18.** In the first 24 hours of a hurricane, the total amount of rain y (in inches) that falls in x hours is represented by y = 0.5x.
 - **19.** The cost *y* (in dollars) of *x* pounds of asparagus is represented by y = 2.8x.
 - **20. B.E.S.T. Test Prep** Which is the graph of the relationship represented by $y = -\frac{3}{2}x$?



- ▶ 21. MODELING REAL LIFE The cost *y* (in dollars) to rent a kayak is proportional to the number *x* of hours that you rent the kayak. It costs \$27 to rent the kayak for 3 hours. (See Example 3.)
 - **a.** Write an equation that represents the situation.
 - **b.** Interpret the slope of the graph of the equation.
 - c. How much does it cost to rent the kayak for 5 hours? Justify your answer.

7 MTR

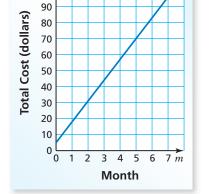
- **22. MODELING REAL LIFE** The distance y (in miles) that a truck travels on x gallons of gasoline is represented by the equation y = 18x. The graph shows the distance that a car travels. (See Example 4.)
 - **a.** Which vehicle gets better gas mileage? Explain how you found your answer.
 - **b.** How much farther can the vehicle you chose in part (a) travel on 8 gallons of gasoline?

252 Chapter 5 Linear Equations and Linear Systems

- **23. REASONING** You are investigating streaming service prices. Service A's total cost *c* (in dollars) for *m* months can be represented by c = 15m. Service B's total cost *t* for *m* months is represented in the graph.
 - **a.** Determine whether the price of each streaming service is proportional to the number of months. Explain your reasoning.
 - **b.** Which service would you choose? Explain.
- **24. ASSESS REASONABLENESS** You time your bike rides and find that the distance *d* (in miles) you travel in *t* hours can be represented by d = 8t. Your friend claims that you can bike to a playground that is 18 miles away in 1.5 hours. Is your friend's claim reasonable? Justify your answer using a graph.
 - **25. PROBLEM SOLVING** Toenails grow about 13 millimeters per year. The table shows fingernail growth.

a.

b.


3 mtr Do fingernails or toenails grow faster? Explain. In the same coordinate plane, graph equations that represent the growth rates of

Weeks

Fingernail Growth

(millimeters)

- to enails and fingernails. Compare and interpret the steepness of each graph.26. CHOOSE A METHOD The cost of blackberries is proportional to their weight. You
- **26. CHOOSE A METHOD** The cost of blackberries is proportional to their weight. You buy blackberries that cost \$3.39 per pound. Graph the relationship and explain why you chose the method you used.
 - **27. REASONING** The quantities *x* and *y* are in a proportional relationship. What do you know about the ratio of *y* to *x* for any point (*x*, *y*) on the graph of *x* and *y*?
 - **28. Dig Deeper** The graph relates the temperature change *y* (in degrees Fahrenheit) to the altitude change *x* (in thousands of feet).
 - **a.** Is the relationship proportional? Explain.
 - **b.** Write an equation of the line. Interpret the slope.
 - **c.** You are at the bottom of a mountain where the temperature is 74°F. The top of the mountain is 5500 feet above you. What is the temperature at the top of the mountain? Justify your answer.
 - **29. REASONING** Consider the distance equation d = rt, where *d* is the distance (in feet), *r* is the rate (in feet per second), and *t* is the time (in seconds). You run for 50 seconds. Are the distance you run and the rate at which you run proportional? Use a graph to justify your answer.

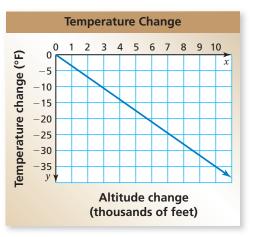
1

0.7

2

1.4

3


2.1

4

2.8

Streaming Service B

100

