6.5 **Properties of Logarithms**

Learning Target

Use properties of logarithms.

• I can evaluate logarithms.

Success Criteria

- I can expand or condense logarithmic expressions.
- I can explain how to use the change-of-base formula.

EXPLORE IT! Deriving Properties of Logarithms

Work with a partner. You can use properties of exponents to derive several properties of logarithms. Let $x = \log_b m$ and $y = \log_b n$. The corresponding exponential forms of these two equations are

 $b^x = m$ and $b^y = n$.

a. The diagram shows a way to derive the Product Property of Logarithms. Complete and explain the diagram.

Exponential Form of mn

b. Derive the Quotient Property of Logarithms shown below using a diagram similar to that in part (a). Explain your reasoning.

$$\log_b \frac{m}{n} = \log_b m - \log_b n$$
 Quotient Property of Logarithms

Give some examples to show that the property works. Revise your work if needed.

c. Use the substitution $m = b^x$ to derive the Power Property of Logarithms shown below.

$$\log_b m^n = n \log_b m$$

Power Property of Logarithms

d. How are these three properties of logarithms similar to properties of exponents?

Math Practice

Make Conjectures Do you think you can extend the Product Property of Logarithms to more than two factors?

Properties of Logarithms

You know that the logarithmic function with base *b* is the inverse function of the exponential function with base b. Because of this relationship, it makes sense that logarithms have properties similar to properties of exponents.

KEY IDEA

Properties of Logarithms

Let b, m, and n be positive real numbers with $b \neq 1$. $\log_{h} mn = \log_{h} m + \log_{h} n$ **Product Property Quotient Property** $\log_b \frac{m}{n} = \log_b m - \log_b n$

Power Property

$a^m a^n = a^{m+n}$ $\frac{a^m}{a^n} = a^{m-n}$ $(a^m)^n = a^{mn}$

STUDY TIP

of exponents.

These three properties of

logarithms correspond to

these three properties

EXAMPLE 1

Using Properties of Logarithms

4 I can teach someone else.

Use $\log_2 3 \approx 1.585$ and $\log_2 7 \approx 2.807$ to evaluate each logarithm.

a. $\log_2 \frac{3}{7}$ **b.** log₂ 21 **c.** log₂ 49

 $\log_b m^n = n \log_b m$

SOLUTION

COMMON ERROR Note that in general $\log_b \frac{m}{m} \neq \frac{\log_b m}{m}$ and	a. $\log_2 \frac{3}{7} = \log_2 3 - \log_2 7$ $\approx 1.585 - 2.807$ = -1.222	Quotient Property Use the given values of $\log_2 3$ and $\log_2 7$. Subtract.
$\log_b n \neq (\log_b n)(\log_b n).$	b. $\log_2 21 = \log_2(3 \cdot 7)$ = $\log_2 3 + \log_2 7$ $\approx 1.585 + 2.807$ = 4.392	Write 21 as 3 • 7. Product Property Use the given values of log ₂ 3 and log ₂ 7. Add.
	c. $\log_2 49 = \log_2 7^2$ = $2 \log_2 7$ $\approx 2(2.807)$ = 5.614	Write 49 as 7 ² . Power Property Use the given value of log ₂ 7. Multiply.

SELF-ASSESSMENT 1 I do not understand.

2 I can do it with help. 3 I can do it on my own.

Use $\log_6 5 \approx 0.898$ and $\log_6 8 \approx 1.161$ to evaluate the logarithm.

- **1.** $\log_6 \frac{5}{8}$ **2.** $\log_6 40$
- **4.** log₆ 125 **3.** log₆ 64

5. MP STRUCTURE Without using technology, can you use the approximations given below to evaluate ln x for all integer values of x between 1 and 10? Explain your reasoning.

 $\ln 2 \approx 0.6931$, $\ln 3 \approx 1.0986$, $\ln 5 \approx 1.6094$

Expanding and Condensing Logarithmic Expressions

Change-of-Base Formula

Logarithms with any base other than 10 or *e* can be written in terms of common or natural logarithms using the *change-of-base formula*. This allows you to evaluate any logarithm using a calculator.

KEY IDEA

Change-of-Base Formula

If a, b, and c are positive real numbers with $b \neq 1$ and $c \neq 1$, then

$$\log_c a = \frac{\log_b a}{\log_b c}$$

In particular, $\log_c a = \frac{\log a}{\log c}$ and $\log_c a = \frac{\ln a}{\ln c}$.

Changing a Base Using **Common Logarithms**

(i)

INFO

Evaluate log₃ 8 using common logarithms.

SOLUTION

ANOTHER WAY

You can also evaluate log₃ 8 using natural logarithms.

$$\log_3 8 = \frac{\ln 8}{\ln 3} \approx 1.893$$

Notice that you get the same answer whether you use natural logarithms or common logarithms in the change-of-base formula.

 $\log_3 8 = \frac{\log 8}{\log 3}$

≈ 1.893

Changing a Base Using Natural Logarithms

 $\log_{c} a = \frac{\log a}{\log c}$

Use technology.

Evaluate log₆ 24 using natural logarithms.

SOLUTION

For a sound with intensity I (in watts per square meter), the loudness L(I) of the sound (in decibels) is given by the function

Modeling Real Life

$$L(I) = 10 \log \frac{I}{I_0}$$

EXAMPLE 6

where I_0 is the intensity of a barely audible sound (about 10^{-12} watt per square meter). An artist in a recording studio turns up the volume of a track so that the intensity of the sound doubles. By how many decibels does the loudness increase?

SOLUTION

Let *I* be the original intensity, so that 2*I* is the doubled intensity.

increase in loudness = L(2I) - L(I)

Write an expression.

$$= 10 \log \frac{2I}{I_0} - 10 \log \frac{I}{I_0}$$
 Substitute.
$$= 10 \left(\log \frac{2I}{I_0} - \log \frac{I}{I_0} \right)$$
 Distributive Property
$$= 10 \left(\log 2 + \log \frac{I}{I_0} - \log \frac{I}{I_0} \right)$$
 Product Property
$$= 10 \log 2$$
 Simplify.

Simplify.

The loudness increases by 10 log 2 decibels, or about 3 decibels.

6.5 Practice with CalcChat[®] AND CalcVIEW[®]

In Exercises 1–4, match the expression with the logarithm that has the same value. Justify your answer.

- **1.** $\log_3 6 \log_3 2$ **A.** $\log_3 64$
- **2.** 2 log₃ 6 **B.** log₃ 3
- **3.** 6 log₃ 2 **C.** log₃ 12
- **4.** $\log_3 6 + \log_3 2$ **D.** $\log_3 36$

In Exercises 5–10, use $\log_7 4 \approx 0.712$ and $\log_7 12 \approx 1.277$ to evaluate the logarithm. \triangleright *Example 1*

5.	log ₇ 3	6.	log ₇ 48
7.	log ₇ 16	8.	log ₇ 64
9.	$\log_7 \frac{1}{4}$	10.	$\log_7 \frac{1}{3}$

In Exercises 11–18, expand the logarithmic expression. Example 2

11.	$\log_3 2x$	12.	$\log_8 3x$
13.	$\log 10x^5$	14.	$\ln 3x^4$
15.	$\ln \frac{x}{3y}$	16.	$\ln\frac{6x^2}{y^4}$
17.	$\log_7 5\sqrt{x}$	18.	$\log_5 \sqrt[3]{x^2y}$

ERROR ANALYSIS In Exercises 19 and 20, describe and correct the error in expanding the logarithmic expression.

In Exercises 21–28, condense the logarithmic expression. ▷ *Example 3*

21.	$\log_4 7 - \log_4 10$	22.	ln 12 - ln 4
23.	$6\ln x + 4\ln y$	24.	$2\log x + \log 1$

1

25.	log ₅	4	+	$\frac{1}{2}$	log ₅	х
		-		- 2		

- **26.** $6 \ln 2 4 \ln y$
- **27.** $5 \ln 2 + 7 \ln x + 4 \ln y$
- **28.** $\log_3 4 + 2 \log_3 \frac{1}{2} + \log_3 x$

In Exercises 29−36, use the change-of-base formula to evaluate the logarithm. *Examples 4 and 5*

29.	log ₄ 7	30.	log ₅ 13
31.	log ₉ 15	32.	log ₈ 22
33.	log ₆ 17	34.	log ₂ 28
35.	$\log_7 \frac{3}{16}$	36.	$\log_3 \frac{9}{40}$

MODELING REAL LIFE In Exercises 37 and 38, use the function $L(I) = 10 \log \frac{I}{L_0}$ given in Example 6.

- **37.** The intensity of the sound of a television commercial is 10 times greater than the intensity of the television program it follows. By how many decibels does the loudness increase? ► *Example 6*
- **38.** The blue whale can produce sound with an intensity that is 1 million times greater than the intensity of the loudest sound a human can make. Find the difference in the loudness of the sounds made by a blue whale and a human.

39. COLLEGE PREP Which of the following is *not* equivalent to $\log_5 \frac{y^4}{3x}$? (A) $4 \log_5 y - \log_5 3x$

- **(B)** $4 \log_5 y \log_5 3 + \log_5 x$
- (C) $4 \log_5 y \log_5 3 \log_5 x$
- (**D**) $\log_5 y^4 \log_5 3 \log_5 x$

40. COLLEGE PREP Which of the following equations is true?

(A)
$$\log_7 x + 2 \log_7 y = \log_7(x + y^2)$$

(B) $9 \log x - 2 \log y = \log \frac{x^9}{y^2}$
(C) $5 \log_4 x + 7 \log_2 y = \log_6 x^5 y^7$
(D) $\log_9 x - 5 \log_9 y = \log_9 \frac{x}{5y}$

- 41. **REWRITING A FORMULA** Under certain conditions, the wind speed (in knots) at an altitude of h meters above a grassy plain can be modeled by the function $s(h) = 2 \ln 100h$.
 - **a.** By what amount does the wind speed increase when the altitude doubles?
 - **b.** Show that the given function can be written in terms of common logarithms as

$$s(h) = \frac{2}{\log e} (\log h + 2).$$

REVIEW & REFRESH

In Exercises 46 and 47, rewrite the equation in exponential or logarithmic form.

- **46.** $\log_4 1024 = 5$ **47.** $7^4 = 2401$
- **48.** Write an equation of the parabola in vertex form.

49. Use the change-of-base formula to evaluate $\log_5 20$.

In Exercises 50 and 51, solve the equation by graphing.

- **50.** $4x^2 3x 6 = -x^2 + 5x + 3$
- **51.** $-(x + 3)(x + 2) = x^2 6x$
- **52. MODELING REAL LIFE** At a frozen yogurt stand, two small cones, one medium cone, and two large cones cost \$14.60. One small cone, one medium cone, and one large cone cost \$8.70. Three small cones, two medium cones, and one large cone cost \$16.50. How much does each cone size cost?

42. HOW DO YOU SEE IT?

Use the graph to determine the value of $\frac{\log 8}{\log 2}$.

4	(y	y	=	log) ₂ .	x			
2					2				
_		/							
	1 🎽	4	2	2	1	6	5	8	3x

43. MP REASONING Determine whether $\log_b(M + N) = \log_b M + \log_b N$ is true for all positive, real values of M, N, and b (with $b \neq 1$). Justify your answer.

44. THOUGHT PROVOKING

Use properties of exponents to prove the change-of-base formula. (*Hint*: Let $x = \log_{h} a$, $y = \log_b c$, and $z = \log_c a$.)

45. DIG DEEPER Describe three ways to transform the graph of $f(x) = \log x$ to obtain the graph of $g(x) = \log 100x - 1$. Justify your answers.

In Exercises 53 and 54, solve the inequality by graphing.

53.
$$x^2 + 13x + 42 < 0$$
 54. $-x^2 - 4x + 6 \le -6$

55. Expand
$$\log \frac{y^3}{x^5}$$
.

56. The graph of *g* is a transformation of the graph of $f(x) = 3^x$. Write a rule for g.

In Exercises 57 and 58, perform the operation. Write the answer in standard form.

57. (3 - i)(8 + 2i)

58. (6 + 11i) - (13 - 4i)

In Exercises 59–62, simplify the expression.

59.
$$e^8 \cdot e^4$$
 60. $\frac{15e^3}{3e^3}$

61.
$$(5e^{4x})^3$$
 62. $\frac{e^{11} \cdot e^{-x}}{e^2}$

