Name:     ID: 
 
Email: 

Instructor Name:    
 
Instructor Email: 

Algebra 2 Chapter 3 Test A

 1. 

Solve mc001-1.jpg.
a.
mc001-2.jpg
c.
mc001-4.jpg
b.
mc001-3.jpg
d.
mc001-5.jpg
 

 2. 

Solve mc002-1.jpg by factoring.
a.
5 and –2
c.
8 and 5
b.
8 and –2
d.
5 and 1
 

 3. 

Find the zeros of the function mc003-1.jpg.
a.
mc003-2.jpg and mc003-3.jpg
c.
mc003-6.jpg and mc003-7.jpg
b.
mc003-4.jpg and mc003-5.jpg
d.
mc003-8.jpg and mc003-9.jpg
 

 4. 

Find the square root of the number mc004-1.jpg.
a.
mc004-2.jpgmc004-3.jpg
c.
mc004-6.jpg
b.
mc004-4.jpgmc004-5.jpg
d.
mc004-7.jpg
 

 5. 

Add. Write the result in the form mc005-1.jpg.
(4 – 5mc005-2.jpg) + (1 + 7mc005-3.jpg)
a.
11 – 4mc005-4.jpg
c.
5 + 2mc005-6.jpg
b.
3 – 12mc005-5.jpg
d.
–1 + 8mc005-7.jpg
 

 6. 

What is the product mc006-1.jpg in the form mc006-2.jpg?
a.
mc006-3.jpg
c.
mc006-5.jpg
b.
mc006-4.jpg
d.
mc006-6.jpg
 

 7. 

Solve mc007-1.jpg.
a.
mc007-2.jpg
c.
mc007-4.jpg
b.
mc007-3.jpg
d.
mc007-5.jpg
 

 8. 

What value of d makes the equation nr008-1.jpg true?

 

 9. 

Complete the square for  mc009-1.jpg. Then write the resulting expression as the square of a binomial.
a.
mc009-2.jpgmc009-3.jpg; mc009-4.jpgmc009-5.jpgmc009-6.jpg
c.
mc009-12.jpg; mc009-13.jpgmc009-14.jpgmc009-15.jpg
b.
mc009-7.jpgmc009-8.jpg; mc009-9.jpgmc009-10.jpgmc009-11.jpg
d.
mc009-16.jpg; mc009-17.jpgmc009-18.jpgmc009-19.jpg
 

 10. 

Solve by completing the square.

sa010-1.jpg
 

 11. 

Write the quadratic function mc011-1.jpg in vertex form.
a.
mc011-2.jpg
c.
mc011-4.jpg
b.
mc011-3.jpg
d.
mc011-5.jpg
 

 12. 

Solve mc012-1.jpg.
a.
mc012-2.jpg
c.
mc012-4.jpg
b.
mc012-3.jpg
d.
mc012-5.jpg
 

 13. 

Use the Quadratic Formula to solve mc013-1.jpg.
a.
mc013-2.jpg
c.
mc013-4.jpg
b.
mc013-3.jpg
d.
mc013-5.jpg
 

 14. 

Use the discriminant to find the number and type of solutions for mc014-1.jpg.
a.
The equation has two nonreal complex solutions.
b.
The equation has two real solutions.
c.
Cannot determine without graphing.
d.
The equation has one real solution.
 

 15. 

Solve the equation mc015-1.jpg using a graph.
a.
mc015-2.jpg
c.
mc015-4.jpg
b.
mc015-3.jpg
d.
mc015-5.jpg
 

 16. 

Solve the system formed by the equations below.
mc016-1.jpg
a.
mc016-2.jpg
c.
mc016-4.jpg
b.
(0, mc016-3.jpg)
d.
mc016-5.jpg and mc016-6.jpg
 

 17. 

The function sa017-1.jpg gives the height h, in feet, of a baseball as a function of time t, in seconds, after it is hit.  Rewrite the function by factoring. How long does it take for the baseball to hit the ground?
 

 18. 

A batter makes contact with a baseball 3 feet above the plate and the ball flies with a vertical velocity of 96 feet per second. It eventually lands in outfield bleacher seats 25 feet above the ground, modeled by the equation pr018-1.jpg. Determine the flight time of the ball by completing the square. Round to two decimal places as needed. Explain why you chose the answer you did.
 

 19. 

Part A: Solve the system formed by the equations below. Round to the nearest hundredth if necessary. Describe the graph of this system.
es019-1.jpg
es019-2.jpg
Part B: Is it possible for a system like the one above to have exactly one solution? Explain why or why not.
 

 20. 

A punter kicks a football 4 feet above the ground with an initial upward velocity of 80 feet per second.

a.      The height above the ground in feet of an object h with an initial upward velocity in feet per second pr020-1.jpg and an initial height in feet pr020-2.jpg is pr020-3.jpg, where pr020-4.jpg is the time in seconds. Write an equation for the height of the football after pr020-5.jpg seconds.
b.      Write an inequality that represents the time when the football is at least 68 feet high.
c.      At what times after the ball is kicked is the football at least 68 feet high?
 



 
         Start Over