<table>
<thead>
<tr>
<th>absolute value equation</th>
<th>conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 (p. 28)</td>
<td>Chapter 1 (p. 3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>equation</th>
<th>equivalent equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 (p. 4)</td>
<td>Chapter 1 (p. 4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>extraneous solution</th>
<th>formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 (p. 31)</td>
<td>Chapter 1 (p. 37)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>identity</th>
<th>inverse operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 (p. 21)</td>
<td>Chapter 1 (p. 4)</td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>An unproven statement about a general mathematical concept</td>
<td></td>
</tr>
<tr>
<td>The product of an even and an odd number is always an even number.</td>
<td></td>
</tr>
<tr>
<td>An equation that contains an absolute value expression</td>
<td></td>
</tr>
</tbody>
</table>
| \(|x| = 2\)
\(|x + 1| = 5\)
\(3|2x + 1| = 6\) |
| **Equations that have the same solution(s)** |
| **A statement that two expressions are equal** |
| \(2x - 8 = 0\) and \(2x = 8\) |
| \(4x = 16\)
\(a + 7 = 21\) |
| **A literal equation that shows how one variable is related to one or more other variables** |
| **An apparent solution that must be rejected because it does not satisfy the original equation** |
| \(A = lw\)
\(I = Prt\)
\(d = rt\) |
| When you square each side of \(x = \sqrt{x + 2}\), the resulting equation has two solutions, \(x = -1\) and \(x = 2\). However, \(x = -1\) is an extraneous solution because it does not satisfy the original equation. |
| **Two operations that undo each other, such as addition and subtraction** |
| **An equation that is true for all values of the variable** |
| Multiplication and division are inverse operations. |
| \(2(x + 1) = 2x + 2\)
\(-3(2x + 3) = -6x - 9\) |
<table>
<thead>
<tr>
<th>Vocabulary Flash Cards</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>linear equation in one</td>
<td>literal equation</td>
</tr>
<tr>
<td>variable</td>
<td>Chapter 1 (p. 4)</td>
</tr>
<tr>
<td></td>
<td>Chapter 1 (p. 36)</td>
</tr>
<tr>
<td>rule</td>
<td>solution of an equation</td>
</tr>
<tr>
<td></td>
<td>Chapter 1 (p. 3)</td>
</tr>
<tr>
<td></td>
<td>Chapter 1 (p. 4)</td>
</tr>
<tr>
<td>theorem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 1 (p. 3)</td>
</tr>
<tr>
<td>An equation that has two or more variables</td>
<td>An equation that can be written in the form $ax + b = 0$, where a and b are constants and $a \neq 0$</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>$2y + 6x = 12$</td>
<td></td>
</tr>
<tr>
<td>$5x + 6 = 0$</td>
<td>$3x = 8$</td>
</tr>
<tr>
<td>A value that makes an equation true</td>
<td>A proven statement about a general mathematical concept; also known as a theorem</td>
</tr>
<tr>
<td>The solution of the equation $x - 4 = 2$ is 6.</td>
<td>The Pythagorean Theorem</td>
</tr>
<tr>
<td>A proven statement about a general mathematical concept</td>
<td>The Pythagorean Theorem</td>
</tr>
<tr>
<td>The Pythagorean Theorem</td>
<td></td>
</tr>
<tr>
<td>absolute deviation</td>
<td>absolute value inequality</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Chapter 2 (p. 90)</td>
<td>Chapter 2 (p. 88)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>compound inequality</th>
<th>equivalent inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2 (p. 82)</td>
<td>Chapter 2 (p. 62)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>graph of an inequality</th>
<th>inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2 (p. 56)</td>
<td>Chapter 2 (p. 54)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>solution of an inequality</th>
<th>solution set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2 (p. 55)</td>
<td>Chapter 2 (p. 55)</td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>An inequality that contains an absolute value expression</td>
<td>The absolute value of the difference of a number (x) and a given value</td>
</tr>
<tr>
<td>[</td>
<td>x</td>
</tr>
<tr>
<td>Inequalities that have the same solutions</td>
<td>An inequality formed by joining two inequalities with the word “and” or the word “or”</td>
</tr>
<tr>
<td>(3x + 5 > 0) and (3x > 5)</td>
<td>(x \geq 2) and (x < 5) (y \leq -2) or (y > 1) (4 < x - 1 < 7)</td>
</tr>
<tr>
<td>A mathematical sentence that compares expressions</td>
<td>A graph that shows the solution set of an inequality on a number line</td>
</tr>
<tr>
<td>(x - 4 < -14) (x + 5 \geq -67)</td>
<td>(x > -2)</td>
</tr>
<tr>
<td>The set of all solutions of an inequality</td>
<td>A value that makes an inequality true</td>
</tr>
<tr>
<td>5 is in the solution set of (x > 1) (3) is not in the solution set of (x \leq 1)</td>
<td>A solution of the inequality (x + 3 > -9) is (x = 2).</td>
</tr>
<tr>
<td>absolute value function</td>
<td>constant function</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Chapter 3 (p. 156)</td>
<td>Chapter 3 (p. 138)</td>
</tr>
<tr>
<td>continuous domain</td>
<td>dependent variable</td>
</tr>
<tr>
<td>Chapter 3 (p. 114)</td>
<td>Chapter 3 (p. 107)</td>
</tr>
<tr>
<td>discrete domain</td>
<td>domain</td>
</tr>
<tr>
<td>Chapter 3 (p. 114)</td>
<td>Chapter 3 (p. 106)</td>
</tr>
<tr>
<td>family of functions</td>
<td>function</td>
</tr>
<tr>
<td>Chapter 3 (p. 146)</td>
<td>Chapter 3 (p. 104)</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards

<table>
<thead>
<tr>
<th>A linear equation written in the form (y = mx + b), or (y = b)</th>
<th>A function that contains an absolute value expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 0x + 5), or (y = 5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The variable that represents output values of a function</th>
<th>A set of input values that consist of all numbers in an interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the function (y = 2x - 3), (y) is the dependent variable.</td>
<td>All numbers from 1 to 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The set of all possible input values of a function</th>
<th>A set of input values that consists of only certain numbers in an interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the ordered pairs ((0, 6), (1, 7), (2, 8),) and ((3, 9)), the domain is 0, 1, 2, and 3.</td>
<td>Integers from 1 to 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A relation that pairs each input with exactly one output</th>
<th>A group of functions with similar characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ordered pairs ((0, 1), (1, 2), (2, 4),) and ((3, 6)) represent a function.</td>
<td>Linear functions and absolute value functions are families of functions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordered Pairs</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 1))</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>((1, 2))</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>((2, 4))</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>((3, 6))</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>function notation</td>
<td>horizontal shrink</td>
<td></td>
</tr>
<tr>
<td>Chapter 3 (p. 122)</td>
<td>Chapter 3 (p. 148)</td>
<td></td>
</tr>
<tr>
<td>horizontal stretch</td>
<td>independent variable</td>
<td></td>
</tr>
<tr>
<td>Chapter 3 (p. 148)</td>
<td>Chapter 3 (p. 107)</td>
<td></td>
</tr>
<tr>
<td>linear equation in two variables</td>
<td>linear function</td>
<td></td>
</tr>
<tr>
<td>Chapter 3 (p. 112)</td>
<td>Chapter 3 (p. 112)</td>
<td></td>
</tr>
<tr>
<td>nonlinear function</td>
<td>parent function</td>
<td></td>
</tr>
<tr>
<td>Chapter 3 (p. 112)</td>
<td>Chapter 3 (p. 146)</td>
<td></td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A transformation that causes the graph of a function to shrink toward the (y)-axis when all the (x)-coordinates are multiplied by a factor (a), where (a > 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The graph of (g) is a horizontal shrink of the graph of (f) by a factor of (\frac{1}{4}).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Another name for (y) denoted as (f(x)) and read as “the value of (f) at (x)” or “(f) of (x)”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y = 5x + 2) can be written in function notation as (f(x) = 5x + 2).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The variable that represents the input values of a function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In the function (y = 5x - 8), (x) is the independent variable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A transformation that causes the graph of a function to stretch away from the (y)-axis when all the (x)-coordinates are multiplied by a factor (a), where (0 < a < 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The graph of (g) is a horizontal stretch of the graph of (f) by a factor of (1 + \frac{1}{3} = 3).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A function whose graph is a nonvertical line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An equation that can be written in the form (y = mx + b), where (m) and (b) are constants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y = 4x + 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6x + 2y = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The most basic function in a family of functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For linear functions, the parent function is (f(x) = x).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A function that does not have a constant rate of change and whose graph is not a line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © Big Ideas Learning, LLC
All rights reserved.
<table>
<thead>
<tr>
<th>range of a function</th>
<th>reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3 (p. 106)</td>
<td>Chapter 3 (p. 147)</td>
</tr>
<tr>
<td>relation</td>
<td>rise</td>
</tr>
<tr>
<td>Chapter 3 (p. 104)</td>
<td>Chapter 3 (p. 136)</td>
</tr>
<tr>
<td>run</td>
<td>slope</td>
</tr>
<tr>
<td>Chapter 3 (p. 136)</td>
<td>Chapter 3 (p. 136)</td>
</tr>
<tr>
<td>slope-intercept form</td>
<td>solution of a linear equation in two variables</td>
</tr>
<tr>
<td>Chapter 3 (p. 138)</td>
<td>Chapter 3 (p. 114)</td>
</tr>
</tbody>
</table>
A transformation that flips a graph over a line called the **line of reflection**

<table>
<thead>
<tr>
<th>Reflection in the x-axis</th>
<th>Reflection in the y-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The set of all possible output values of a function

For the ordered pairs (0, 6), (1, 7), (2, 8), and (3, 9), the range is 6, 7, 8, and 9.

The change in \(y \) between any two points on a line

The change in \(x \) between any two points on a line

An ordered pair \((x, y)\) that makes an equation true

A linear equation written in the form \(y = mx + b \)

A solution of \(x + 2y = -6 \) is \((2, -4)\).

The slope is 1 and the \(y \)-intercept is 2.
<table>
<thead>
<tr>
<th>standard form of a linear equation</th>
<th>transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3 (p. 130)</td>
<td>Chapter 3 (p. 146)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>translation</th>
<th>vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3 (p. 146)</td>
<td>Chapter 3 (p. 156)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vertex form of an absolute value function</th>
<th>vertical shrink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3 (p. 158)</td>
<td>Chapter 3 (p. 148)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vertical stretch</th>
<th>x-intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3 (p. 148)</td>
<td>Chapter 3 (p. 131)</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A change in the size, shape, position, or orientation of a graph</td>
<td>See translation, reflection, horizontal shrink, horizontal stretch, vertical shrink, and vertical stretch.</td>
</tr>
<tr>
<td>A linear equation written in the form $Ax + By = C$</td>
<td>where A, B, and C are real numbers and A and B are not both zero.</td>
</tr>
<tr>
<td>$-2x + 3y = -6$</td>
<td></td>
</tr>
<tr>
<td>The point where a graph changes direction</td>
<td>A transformation that shifts a graph horizontally and/or vertically but does not change the size, shape, or orientation of the graph.</td>
</tr>
<tr>
<td>A transformation that causes the graph of a function to shrink toward the x-axis when all the y-coordinates are multiplied by a factor a, where $0 < a < 1$</td>
<td>An absolute value function written in the form $f(x) = a</td>
</tr>
<tr>
<td>The graph of h is a vertical shrink of a graph of f by a factor of $\frac{1}{4}$.</td>
<td>$f(x) =</td>
</tr>
<tr>
<td>The x-coordinate of a point where the graph crosses the x-axis</td>
<td>A transformation that causes the graph of a function to stretch away from the x-axis when all the y-coordinates are multiplied by a factor a, where $a > 1$.</td>
</tr>
<tr>
<td></td>
<td>The graph of h is a vertical stretch of the graph of f by a factor of 3.</td>
</tr>
</tbody>
</table>
y-intercept

Chapter 3 (p. 131)
The y-coordinate of a point where the graph crosses the y-axis

\[y \text{-intercept} = b \]

\[(0, b)\]
<table>
<thead>
<tr>
<th>Vocabulary Flash Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>arithmetic sequence</td>
</tr>
<tr>
<td>Chapter 4 (p. 210)</td>
</tr>
<tr>
<td>common difference</td>
</tr>
<tr>
<td>Chapter 4 (p. 210)</td>
</tr>
<tr>
<td>correlation coefficient</td>
</tr>
<tr>
<td>Chapter 4 (p. 203)</td>
</tr>
<tr>
<td>interpolation</td>
</tr>
<tr>
<td>Chapter 4 (p. 205)</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards

<table>
<thead>
<tr>
<th>When a change in one variable causes a change in another variable</th>
<th>An ordered list of numbers in which the difference between each pair of consecutive terms is the same</th>
</tr>
</thead>
</table>
| time spent exercising and the number of calories burned |Terms of an arithmetic sequence
3, \(\frac{5}{2}\), \(\frac{7}{2}\), \(\frac{9}{2}\), … |

<table>
<thead>
<tr>
<th>A relationship between data sets</th>
<th>The difference between each pair of consecutive terms in an arithmetic sequence</th>
</tr>
</thead>
</table>
| |Terms of an arithmetic sequence
3, \(\frac{5}{2}\), \(\frac{7}{2}\), \(\frac{9}{2}\), … |

<table>
<thead>
<tr>
<th>To predict a value outside the range of known values using a graph or its equation</th>
<th>A number (r) from –1 to 1 that tells how closely the equation of the line of best fit models the data</th>
</tr>
</thead>
<tbody>
<tr>
<td>You have a model relating age and average number of hours of sleep based on a data set where ages range from 6 to 55. Using the model to predict the average number of hours of sleep for a 5-year-old or a 57-year-old is an example of extrapolation.</td>
<td>(r = -1) Strong negative correlation (r = 0) No correlation (r = 1) Strong positive correlation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A line that best models a set of data</th>
<th>To approximate a value between two known values using a graph or its equation</th>
</tr>
</thead>
</table>
| |You have a model relating age and average number of hours of sleep based on a data set where ages range from 6 to 55. Using the model to predict the average number of hours of sleep for a 47-year-old is an example of interpolation.
<table>
<thead>
<tr>
<th>Vocabulary Flash Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>line of fit</td>
</tr>
<tr>
<td>Chapter 4 (p. 198)</td>
</tr>
<tr>
<td>linear regression</td>
</tr>
<tr>
<td>Chapter 4 (p. 203)</td>
</tr>
<tr>
<td>perpendicular lines</td>
</tr>
<tr>
<td>Chapter 4 (p. 189)</td>
</tr>
<tr>
<td>point-slope form</td>
</tr>
<tr>
<td>Chapter 4 (p. 182)</td>
</tr>
</tbody>
</table>
A linear function that models a real-life situation

The function \(y = 0.8x + 16 \) models a company’s annual profits \(y \) (in millions) after \(x \) years.

A line drawn on a scatter plot that is close to most of the data points

Two lines in the same plane that never intersect

A method that graphing calculators use to find a precise line of fit that models a set of data

A function defined by two or more equations

\[
 f(x) = \begin{cases}
 x - 2, & \text{if } x \leq 0 \\
 2x + 1, & \text{if } x > 0
\end{cases}
\]

Two lines in the same plane that intersect to form right angles

The difference of the \(y \)-value of a data point and the corresponding \(y \)-value found using the line of fit

A linear equation written in the form \(y - y_i = m(x - x_i) \)

\[
y - 1 = \frac{2}{3}(x + 6)
\]
<table>
<thead>
<tr>
<th>scatter plot</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4 (p. 196)</td>
<td>Chapter 4 (p. 210)</td>
</tr>
<tr>
<td>step function</td>
<td>terms of a sequence</td>
</tr>
<tr>
<td>Chapter 4 (p. 220)</td>
<td>Chapter 4 (p. 210)</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>An ordered list of numbers</td>
<td>5, 10, 15, 20, ..., a_n, ...</td>
</tr>
<tr>
<td>2, 4, 8, 16, ..., a_n, ...</td>
<td></td>
</tr>
<tr>
<td>A graph that shows the relationship between two data sets</td>
<td></td>
</tr>
<tr>
<td>Each number in a sequence</td>
<td>5, 10, 15, 20, ..., a_n, ...</td>
</tr>
<tr>
<td>1st position, 3rd position, nth position</td>
<td></td>
</tr>
</tbody>
</table>
| A piecewise function defined by a constant value over each part of its domain | \[f(x) = \begin{cases}
 50, & \text{if } 0 < x \leq 1 \\
 75, & \text{if } 1 < x \leq 2 \\
 100, & \text{if } 2 < x \leq 3 \\
 125, & \text{if } 3 < x \leq 4 \\
 150, & \text{if } 4 < x \leq 5
\end{cases} \] |
<table>
<thead>
<tr>
<th>Vocabulary Flash Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>graph of a linear inequality</td>
</tr>
<tr>
<td>Chapter 5 (p. 268)</td>
</tr>
<tr>
<td>half-planes</td>
</tr>
<tr>
<td>Chapter 5 (p. 268)</td>
</tr>
<tr>
<td>solution of a linear inequality in two variables</td>
</tr>
<tr>
<td>Chapter 5 (p. 268)</td>
</tr>
<tr>
<td>solution of a system of linear inequalities</td>
</tr>
<tr>
<td>Chapter 5 (p. 274)</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards

<table>
<thead>
<tr>
<th>The graph of all the solutions of the system of linear inequalities</th>
<th>The graph in two variables that shows all the solutions of the inequality in a coordinate plane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>The graph of (y < x - 3) is the shaded half-plane.</td>
<td>Two regions of the coordinate plane divided by a boundary line</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>An inequality written in the form (ax + by < c,) (ax + by \leq c,) (ax + by > c,) or (ax + by \geq c,) where (a, b,) and (c) are real numbers</td>
<td>An ordered pair ((x, y)) that makes an inequality true</td>
</tr>
<tr>
<td>(2x + y < -3) (x - 3y \geq 8)</td>
<td>A set of two or more linear equations in the same variable</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>An ordered pair that is a solution of each equation in the system</td>
<td>The solution of the following system of linear inequalities is ((2, 5)).</td>
</tr>
<tr>
<td>The solution of the following system of linear equations is ((1, -3)).</td>
<td></td>
</tr>
<tr>
<td>(4x - y = 7) Equation 1 (2x + 3y = -7) Equation 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>An ordered pair that is a solution of each inequality in the system.</td>
</tr>
<tr>
<td>A set of two or more linear equations in the same variable</td>
<td>The solution of the following system of linear inequalities is ((-2, 5)).</td>
</tr>
<tr>
<td>(y = x + 1) Equation 1 (y = 2x - 7) Equation 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>An ordered pair that is a solution of each inequality in the system.</td>
<td>An ordered pair that is a solution of each inequality in the system.</td>
</tr>
<tr>
<td>The solution of the following system of linear inequalities is ((-2, 5)).</td>
<td></td>
</tr>
<tr>
<td>(x - y < 4) Inequality 1 (2x - y \geq -9) Inequality 2</td>
<td></td>
</tr>
</tbody>
</table>
system of linear inequalities

Chapter 5 (p. 274)
A set of two or more linear inequalities in the same variables

\begin{align*}
 y &< x + 2 \quad \text{Inequality 1} \\
 y &\geq 2x - 1 \quad \text{Inequality 2}
\end{align*}
<table>
<thead>
<tr>
<th>common ratio</th>
<th>compound interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6 (p. 332)</td>
<td>Chapter 6 (p. 317)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>explicit rule</td>
<td>exponential decay</td>
</tr>
<tr>
<td>Chapter 6 (p. 340)</td>
<td>Chapter 6 (p. 315)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>exponential decay function</td>
<td>exponential equation</td>
</tr>
<tr>
<td>Chapter 6 (p. 315)</td>
<td>Chapter 6 (p. 326)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>exponential function</td>
<td>exponential growth</td>
</tr>
<tr>
<td>Chapter 6 (p. 306)</td>
<td>Chapter 6 (p. 314)</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards

The interest earned on the principle and on previously earned interest	The ratio between each pair of consecutive terms in a geometric sequence
The balance \(y \) of an account earning compound interest is \(y = P \left(1 + \frac{r}{n}\right)^{nt} \), where \(P \) is the principle (initial amount), \(r \) is the annual interest rate (in decimal form), \(t \) is the time (in years), and \(n \) is the number of times interest is compounded per year.	1, 4, 16, 64, \ldots Terms of a geometric sequence
\[\frac{1}{4} \times 4 = 1 \] \[\frac{1}{4} \times 4 = 1 \] \[\frac{1}{4} \times 4 = 1 \]	common ratio

| When a quantity decreases by the same factor over equal intervals of time | A rule to define arithmetic and geometric sequences that gives \(a_n \) as a function of the term’s position number \(n \) in the sequence |
| See exponential decay function. | An explicit rule for the arithmetic sequence 1, 7, 13, 19, \ldots is \(a_n = 1 + 6(n - 1) \), or \(a_n = 6n - 5 \). |

| An equation in which variable expressions occur as exponents | A function of the form \(y = a(1 - r)^t \), where \(a > 0 \) and \(0 < r < 1 \) |
| \(2^{x+1} = 2^5 \) \[y = 20(0.15)^t \] \[y = 500 \left(\frac{7}{8}\right)^t \] | See exponential decay. |

<p>| When a quantity increases by the same factor over equal intervals of time | A nonlinear function of the form (y = ab^x), where (a \neq 0, b \neq 1,) and (b > 0) |
| See exponential growth function. | (y = -2(5)^x) [y = 2(0.5)^x] |</p>
<table>
<thead>
<tr>
<th>exponential growth function</th>
<th>geometric sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6 (p. 314)</td>
<td>Chapter 6 (p. 332)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>index of a radical</th>
<th>nth root of a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6 (p. 300)</td>
<td>Chapter 6 (p. 300)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>radical</th>
<th>recursive rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6 (p. 300)</td>
<td>Chapter 6 (p. 340)</td>
</tr>
<tr>
<td>An ordered list of numbers in which the ratio between each pair of consecutive terms is the same</td>
<td>Terms of a geometric sequence</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$1, \ 4, \ 16, \ 64, \ldots$</td>
<td>$\times 4 \quad \times 4 \quad \times 4$</td>
</tr>
</tbody>
</table>

A function of the form $y = a(1 + r)^t$, where $a > 0$ and $r > 0$

$y = 20(1.15)^t$

$y = 500 \left(\frac{7}{5} \right)^t$

See exponential growth.

For an integer n greater than 1, if $b^n = a$, then b is an nth root of a.

$\sqrt[3]{64} = \sqrt[3]{4 \cdot 4 \cdot 4} = 4$

$\sqrt[3]{a} = n$th root of a

The value of n in the radical $\sqrt[n]{a}$

The index of $\sqrt[3]{125}$ is 3.

A rule to define arithmetic and geometric sequences that gives the beginning term(s) of a sequence and a recursive equation that tells how a_n is related to one or more preceding terms

$a_n = a_{n-1} + d$, where d is the common difference

$a_1 = 2, \ a_n = a_{n-1} + 3$

$a_n = r \cdot a_{n-1}$, where r is the common ratio

$a_1 = 1, \ a_n = 3a_{n-1}$

An expression of the form $\sqrt[n]{a}$

$\frac{\sqrt{20}}{}$

$\sqrt[3]{55}$
<table>
<thead>
<tr>
<th>Vocabulary Flash Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>binomial</td>
</tr>
<tr>
<td>Chapter 7 (p. 359)</td>
</tr>
<tr>
<td>degree of a monomial</td>
</tr>
<tr>
<td>Chapter 7 (p. 358)</td>
</tr>
<tr>
<td>factored completely</td>
</tr>
<tr>
<td>Chapter 7 (p. 404)</td>
</tr>
<tr>
<td>factoring by grouping</td>
</tr>
<tr>
<td>Chapter 7 (p. 404)</td>
</tr>
<tr>
<td>When an operation performed on any two numbers in the set results in a number that is also in the set</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
| The set of integers is closed under addition, subtraction, and multiplication, but not under division. | \[x^2 + 3x \]
| | \[2x - 1 \] |

<table>
<thead>
<tr>
<th>The greatest degree of the terms in a polynomial</th>
<th>The sum of the exponents of the variables in the monomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>The degree of (6x^2 + x) is 2. The degree of (x^5 + x^2 - 8) is 5.</td>
<td>The degree of 5 is 0. The degree of (x^2) is 2. The degree of (2xy^3) is (1 + 3 = 4).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A polynomial that is written as a product of factors</th>
<th>A polynomial that is written as a product of unfactorable polynomials with integer coefficients</th>
</tr>
</thead>
</table>
| \[x^2 + 2x = x(x + 2) \]
| \[x^2 + 5x - 24 = (x - 3)(x + 8) \] | \[3x^3 - 18x^2 + 24x = 3x(x^2 - 6x + 8) \]
| | \[= 3x(x - 2)(x - 4) \] |

<table>
<thead>
<tr>
<th>A shortcut for multiplying two binomials by finding the sum of the products of the first terms, outer terms, inner terms, and last terms</th>
<th>To use the Distributive Property to factor a polynomial with four terms</th>
</tr>
</thead>
</table>
| \(F \) \((x + 1)(x + 2) \) ➡️ \(x(x) = x^2 \) | \(x^3 + 3x^2 + 2x + 6 = (x^3 + 3x^2) + (2x + 6) \)
| \(O \) \((x + 1)(x + 2) \) ➡️ \(x(2) = 2x \) | \[= x^2(x + 3) + 2(x + 3) \]
| \(I \) \((x + 1)(x + 2) \) ➡️ \(1(x) = x \) | \[= (x + 3)(x^2 + 2) \]
<p>| (L) ((x + 1)(x + 2)) ➡️ (1(2) = 2) | |</p>
<table>
<thead>
<tr>
<th>leading coefficient</th>
<th>monomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7 (p. 359)</td>
<td>Chapter 7 (p. 358)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>polynomial</th>
<th>repeated roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7 (p. 359)</td>
<td>Chapter 7 (p. 379)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>roots</th>
<th>standard form of a polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7 (p. 378)</td>
<td>Chapter 7 (p. 359)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>trinomial</th>
<th>Zero-Product Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7 (p. 359)</td>
<td>Chapter 7 (p. 378)</td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A number, a variable, or a product of a number and one or more variables with whole</td>
<td></td>
</tr>
<tr>
<td>number exponents</td>
<td></td>
</tr>
<tr>
<td>The coefficient of the first term of the polynomial written in standard form</td>
<td></td>
</tr>
<tr>
<td>The leading coefficient of $3x^2 + 5x - 1$ is 3.</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td></td>
</tr>
<tr>
<td>$0.5y^2$</td>
<td></td>
</tr>
<tr>
<td>$4x^2y$</td>
<td></td>
</tr>
<tr>
<td>Two or more roots of an equation that are the same number</td>
<td></td>
</tr>
<tr>
<td>A monomial or a sum of monomials</td>
<td></td>
</tr>
<tr>
<td>The equation $(x + 2)^2 = 0$ has repeated roots of $x = -2$.</td>
<td></td>
</tr>
<tr>
<td>The solution of a polynomial equation</td>
<td></td>
</tr>
<tr>
<td>The roots of the equation $(x + 9)(x - 4) = 0$ are $x = -9$ and $x = 4$.</td>
<td></td>
</tr>
<tr>
<td>A polynomial in one variable written with the exponents of the terms decreasing form</td>
<td></td>
</tr>
<tr>
<td>left to right</td>
<td></td>
</tr>
<tr>
<td>The exponents of the terms decreasing from left to right</td>
<td></td>
</tr>
<tr>
<td>$2x^3 + x^2 - 5x + 12$</td>
<td></td>
</tr>
<tr>
<td>$-x^3 + 15x + 3$</td>
<td></td>
</tr>
<tr>
<td>A polynomial with three terms</td>
<td></td>
</tr>
<tr>
<td>$x^2 + 5x + 2$</td>
<td></td>
</tr>
<tr>
<td>If the product of two real numbers is 0, then at least one of the numbers is 0.</td>
<td></td>
</tr>
<tr>
<td>The roots of the equation $(x + 9)(x - 4) = 0$ are $x = -9$ and $x = 4$.</td>
<td></td>
</tr>
<tr>
<td>average rate of change</td>
<td>axis of symmetry</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Chapter 8 (p. 462)</td>
<td>Chapter 8 (p. 420)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>even function</th>
<th>intercept form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 8 (p. 442)</td>
<td>Chapter 8 (p. 450)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>maximum value</th>
<th>minimum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 8 (p. 433)</td>
<td>Chapter 8 (p. 433)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>odd function</th>
<th>parabola</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 8 (p. 442)</td>
<td>Chapter 8 (p. 420)</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>The vertical line that divides a parabola into two symmetric parts</td>
<td></td>
</tr>
<tr>
<td>The slope of the line through ((a, f(a))) and ((b, f(b))) of a function (y = f(x)) between (x = a) and (x = b)</td>
<td>[\text{average rate of change} = \frac{\text{change in } y}{\text{change in } x} = \frac{f(b) - f(a)}{b - a}]</td>
</tr>
</tbody>
</table>
| A quadratic function written in the form \(f(x) = a(x - p)(x - q)\), where \(a \neq 0\) | \(f(x) = 2(x - 3)(x - 1)\)
\(f(x) = 3(x + 4)(x - 2)\) |
| A function \(y = f(x)\) is even when \(f(-x) = f(x)\) for each \(x\) in the domain of \(f\). | \(f(x) = x^2\)
\(f(x) = 3x^4 - 2x^2\) |
| The \(y\)-coordinate of the vertex of the graph of \(f(x) = ax^2 + bx + c\) when \(a > 0\) | ![Vertex Diagram](image2) |
| The \(y\)-coordinate of the vertex of the graph of \(f(x) = ax^2 + bx + c\) when \(a < 0\) | ![Minimum and Maximum Diagram](image3) |
| The U-shaped graph of a quadratic function | ![Graph of a Quadratic Function](image4) |
| A function \(y = f(x)\) is odd when \(f(-x) = -f(x)\) for each \(x\) in the domain of \(f\). | \(f(x) = x^3\)
\(f(x) = 2x^5 + x^3\) |
<table>
<thead>
<tr>
<th>vertex form of a quadratic function</th>
<th>vertex of a parabola</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 8 (p. 444)</td>
<td>Chapter 8 (p. 420)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>zero of a function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 8 (p. 428)</td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>The lowest point on a parabola that opens up or the highest point on a parabola that opens down</td>
</tr>
</tbody>
</table>
| ![Graph of a parabola](image) | \(y = (x - 2)^2 \)
<p>| | (y = -2(x + 4)^2 + 3) |
| An (x)-value of a function (f) for which (f(x) = 0); an (x)-intercept of the graph of the function | The zero of (f(x) = 2x - 6) is 3 because (f(3) = 0) and 3 is the (x)-intercept of the graph of the function. |
| | |</p>
<table>
<thead>
<tr>
<th>compleing the square</th>
<th>conjugates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 9 (p. 506)</td>
<td>Chapter 9 (p. 482)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>counterexample</th>
<th>discriminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 9 (p. 479)</td>
<td>Chapter 9 (p. 518)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>like radicals</th>
<th>quadratic equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 9 (p. 484)</td>
<td>Chapter 9 (p. 490)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quadratic Formula</th>
<th>quadratic function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 9 (p. 516)</td>
<td>Chapter 9 (p. 420)</td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Binomials of the form $a\sqrt{b} + c\sqrt{d}$ and $a\sqrt{b} - c\sqrt{d}$, where $a, b, c,$ and d are rational numbers</td>
<td></td>
</tr>
<tr>
<td>$6\sqrt{5} + 2\sqrt{3}$ and $6\sqrt{5} - 2\sqrt{3}$</td>
<td></td>
</tr>
<tr>
<td>To add a constant c to an expression of the form $x^2 + bx$ so that $x^2 + bx + c$ is a perfect square trinomial</td>
<td></td>
</tr>
<tr>
<td>$x^2 + 6x + 9 = (x + 3)^2$</td>
<td></td>
</tr>
<tr>
<td>$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$</td>
<td></td>
</tr>
<tr>
<td>The expression under the radical symbol, $b^2 - 4ac$, in the Quadratic Formula</td>
<td></td>
</tr>
<tr>
<td>The value of the discriminant of the equation $3x^2 - 2x - 7 = 0$ is</td>
<td></td>
</tr>
<tr>
<td>$b^2 - 4ac = (-2)^2 - 4(3)(-7) = 88.$</td>
<td></td>
</tr>
<tr>
<td>An example that proves that a general statement is not true</td>
<td></td>
</tr>
<tr>
<td>Conjecture: Every whole number ending in 6 evenly divides 3.</td>
<td></td>
</tr>
<tr>
<td>Counterexample: 16 does not evenly divide 3.</td>
<td></td>
</tr>
<tr>
<td>A nonlinear equation that can be written in the standard form $ax^2 + bx + c = 0$, where $a \neq 0$</td>
<td></td>
</tr>
<tr>
<td>$x^2 + 4x = 12$</td>
<td></td>
</tr>
<tr>
<td>$-x^2 + 1 = 2x$</td>
<td></td>
</tr>
<tr>
<td>Radicals with the same index and radicand</td>
<td></td>
</tr>
<tr>
<td>$3\sqrt{11}$ and $5\sqrt{11}$</td>
<td></td>
</tr>
<tr>
<td>$4\sqrt{x}$ and $5\sqrt{x}$</td>
<td></td>
</tr>
<tr>
<td>A nonlinear function that can be written in the standard form $y = ax^2 + bx + c$, where $a \neq 0$</td>
<td></td>
</tr>
<tr>
<td>$y = -16x^2 + 48x + 6$</td>
<td></td>
</tr>
<tr>
<td>The real solutions of the quadratic equation $ax^2 + bx + c = 0$ are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, where $a \neq 0$ and $b^2 - 4ac \geq 0$.</td>
<td></td>
</tr>
<tr>
<td>To solve $2x^2 + 13x - 7 = 0$, substitute 2 for a, 13 for b, and -7 for c in the Quadratic Formula.</td>
<td></td>
</tr>
<tr>
<td>$x = \frac{-13 \pm \sqrt{13^2 - 4(2)(-7)}}{2(2)} \Rightarrow x = \frac{1}{2}$ and $x = -7$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>radical expression</td>
<td>rationalizing the denominator</td>
</tr>
<tr>
<td>Chapter 9 (p. 480)</td>
<td>Chapter 9 (p. 482)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>simplest form</td>
<td>system of nonlinear equations</td>
</tr>
<tr>
<td>Chapter 9 (p. 480)</td>
<td>Chapter 9 (p. 526)</td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>To eliminate a radical from the denominator of a fraction by multiplying by an appropriate form of 1</td>
<td>An expression that contains a radical</td>
</tr>
</tbody>
</table>
| \[
\frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}} = \frac{\sqrt{10}}{\sqrt{100}} = \frac{\sqrt{10}}{10}
\] | \[
\sqrt{50} - 2
\] |
| \[
\frac{\sqrt{2}}{\sqrt{3n}} = \frac{\sqrt{2}}{\sqrt{3n}} \cdot \frac{\sqrt{3n}}{\sqrt{3n}} = \frac{\sqrt{6n}}{\sqrt{9n^2}} = \frac{\sqrt{6n}}{3n}
\] | \[
\sqrt{64x^3}
\] |
| A system in which at least one of the equations is nonlinear | A radical that has no radicands with perfect \(n\)th powers as factors other than 1, no radicands that contain fractions, and no radicals that appear in the denominator of a fraction |
| \[
y = 2x^2 + 5x - 1 \quad \text{Equation 1}
\]
| \[
y = x - 3 \quad \text{Equation 2}
\] | \[
\sqrt{27} = 3\sqrt{3}
\]
| \[
\frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}
\] | |
<table>
<thead>
<tr>
<th>Vocabulary Flash Cards</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cube root function</td>
<td>inverse function</td>
</tr>
<tr>
<td>Chapter 10 (p. 552)</td>
<td>Chapter 10 (p. 569)</td>
</tr>
<tr>
<td>inverse relation</td>
<td>radical equation</td>
</tr>
<tr>
<td>Chapter 10 (p. 568)</td>
<td>Chapter 10 (p. 560)</td>
</tr>
<tr>
<td>radical function</td>
<td>square root function</td>
</tr>
<tr>
<td>Chapter 10 (p. 545)</td>
<td>Chapter 10 (p. 544)</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards

<table>
<thead>
<tr>
<th>Functions that undo each other</th>
<th>A radical function with an index of 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = 2x - 5$ and $g(x) = \frac{1}{2}x + \frac{5}{2}$</td>
<td>$y = 5\sqrt[3]{x - 6}$</td>
</tr>
<tr>
<td></td>
<td>$y = -\sqrt[3]{x + 2} - 8$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>An equation that contains a radical expression with a variable in the radicand</th>
<th>When the input and output values of the original relation are switched</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{x} + 6 = 12$</td>
<td>$(-4, 7), (-2, 4), (0, 1), (2, -2), (4, -5)$</td>
</tr>
<tr>
<td>$4 - 2\sqrt{x} = 0$</td>
<td>$(7, -4), (4, -2), (1, 0), (-2, 2), (-5, 4)$</td>
</tr>
<tr>
<td>$\sqrt{3x} - 1 = \sqrt{x + 4}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A function that contains a square root with the independent variable in the radicand</th>
<th>A function that contains a radical expression with the independent variable in the radicand</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = 3\sqrt{x - 5}$</td>
<td>$g(x) = \sqrt{x - 5}$</td>
</tr>
<tr>
<td>$f(x) = -\sqrt{x + 1} + 2$</td>
<td>$h(x) = \sqrt{3x + 6}$</td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>box-and-whisker plot</td>
<td>categorical data</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 594)</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 618)</td>
</tr>
<tr>
<td>conditional relative frequency</td>
<td>data transformation</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 612)</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 589)</td>
</tr>
<tr>
<td>five-number summary</td>
<td>interquartile range</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 594)</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 595)</td>
</tr>
<tr>
<td>joint frequency</td>
<td>joint relative frequency</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 610)</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 611)</td>
</tr>
</tbody>
</table>
Data that consists of labels or nonnumerical entries that can be separated into different categories; also known as qualitative data

A graph that shows the variability of a data set along a number line using the least value, the greatest value, and the quartiles of the data

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Qualitative Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>a student</td>
<td>What is your favorite subject? math</td>
</tr>
<tr>
<td>a house</td>
<td>In what state is the house located? Wisconsin</td>
</tr>
</tbody>
</table>

A procedure that uses a mathematical operation to change a data set into a different data set

Adding 5 to each value in the data set

\[-2, 0, 1, 4, 5, 16\]

transforms the data set into

\[3, 5, 6, 9, 10, 21.\]

The ratio of a joint relative frequency to the marginal relative frequency

Given that a student is not planning to major in a medical field, the conditional relative frequency that he or she is a junior is about 48%.

A measure of variation for a data set, which is the difference of the third quartile and the first quartile

The interquartile range of the data set is

\[42 - 18 = 24.\]

The five numbers that make up a box-and-whisker plot (least value, first quartile, median, third quartile, and greatest value)

\[14, 16, 16, 17, 18, 18, 21\]

See box-and-whisker plot.

The ratio of a frequency that is not in the “total” row or the “total” column to the number of values or observations

Each entry in a two-way table

<table>
<thead>
<tr>
<th>Major in Medical Field</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td>124</td>
<td>219</td>
<td>0.50</td>
</tr>
<tr>
<td>Senior</td>
<td>101</td>
<td>236</td>
<td>0.50</td>
</tr>
<tr>
<td>Total</td>
<td>0.33</td>
<td>0.67</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student</th>
<th>Studied</th>
<th>Did Not Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>Passed</td>
<td>Failed</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Copyright © Big Ideas Learning, LLC
All rights reserved.

Big Ideas Math Algebra 1
<table>
<thead>
<tr>
<th>Vocabulary Flash Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>marginal frequency</td>
</tr>
<tr>
<td>Chapter 11 (p. 610)</td>
</tr>
<tr>
<td>mean</td>
</tr>
<tr>
<td>Chapter 11 (p. 586)</td>
</tr>
<tr>
<td>measure of variation</td>
</tr>
<tr>
<td>Chapter 11 (p. 587)</td>
</tr>
<tr>
<td>misleading graph</td>
</tr>
<tr>
<td>Chapter 11 (p. 620)</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards

The sum of the joint relative frequencies in a row or a column

<table>
<thead>
<tr>
<th>Class</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior</td>
<td>$\frac{124}{680} \approx 0.18$</td>
<td>$\frac{219}{680} \approx 0.32$</td>
<td>0.50</td>
</tr>
<tr>
<td>Senior</td>
<td>$\frac{101}{680} \approx 0.15$</td>
<td>$\frac{236}{680} \approx 0.35$</td>
<td>0.50</td>
</tr>
<tr>
<td>Total</td>
<td>0.33</td>
<td>0.67</td>
<td>1</td>
</tr>
</tbody>
</table>

The sums of the rows and columns in a two-way table

<table>
<thead>
<tr>
<th>Age</th>
<th>12–13</th>
<th>14–15</th>
<th>16–17</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ride Bus</td>
<td>24</td>
<td>12</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>Does Not Ride Bus</td>
<td>16</td>
<td>13</td>
<td>21</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>25</td>
<td>35</td>
<td>100</td>
</tr>
</tbody>
</table>

A measure that represents the center, or typical value, of a data set

The mean, median, and mode are measures of center.

The sum of a numerical data set divided by the number of data values

The mean of the values 7, 4, 8, and 9 is $\frac{7 + 4 + 8 + 9}{4} = \frac{28}{4} = 7$.

The middle number of a numerical data set when the values are written in numerical order

The median of the data set 24, 25, 29, 33, 38 is 29.

A measure that describes the spread, or distribution, of a data set

The range and standard deviation are measures of variation.

The value or values that occur most often in a data set

The mode of the data set 3, 4, 4, 7, 7, 9, 12 are 4 and 7.

Tuition, Room, and Board at All Colleges and Universities

<table>
<thead>
<tr>
<th>Academic year</th>
<th>Average cost (dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007–2008</td>
<td>16,000</td>
</tr>
<tr>
<td>2008–2009</td>
<td>16,500</td>
</tr>
<tr>
<td>2009–2010</td>
<td>17,000</td>
</tr>
<tr>
<td>2010–2011</td>
<td>18,000</td>
</tr>
<tr>
<td>Vocabulary Flash Cards</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>outlier</td>
<td>qualitative data</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 587)</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 618)</td>
</tr>
<tr>
<td></td>
<td>quantitative data</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 618)</td>
</tr>
<tr>
<td></td>
<td>range of a data set</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 587)</td>
</tr>
<tr>
<td></td>
<td>two-way table</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 (p. 610)</td>
</tr>
</tbody>
</table>
Data that consists of labels or nonnumerical entries that can be separated into different categories

A data value that is much greater than or much less than the other values in a data set

In the data set 2, 4, 4, 5, 6, 64, the data value 64 is an outlier.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Qualitative Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>a student</td>
<td>What is your favorite subject? math</td>
</tr>
<tr>
<td>a house</td>
<td>In what state is the house located? Wisconsin</td>
</tr>
</tbody>
</table>

Values of a box-and-whisker plot that divide a data set into four equal parts

Data that consist of numbers that represent counts or measurements

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Quantitative Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>a student</td>
<td>What is your age? 15</td>
</tr>
<tr>
<td>a house</td>
<td>How many bedrooms? 3</td>
</tr>
</tbody>
</table>

A measure of how much a typical value in a numerical data set differs from the mean

The standard deviation is given by

$$\sigma = \sqrt{\frac{\sum(x_i - \bar{x})^2}{n}}$$

where n is the number of values in the data set.

The difference of the greatest value and the least value of a data set

The range of the data set 12, 16, 18, 22, 27, 35 is $35 - 12 = 23$.

A frequency table that displays data collected from one source that belong to two different categories

<table>
<thead>
<tr>
<th>Fundraiser</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>22</td>
<td>51</td>
</tr>
<tr>
<td>Male</td>
<td>30</td>
<td>29</td>
</tr>
</tbody>
</table>
Vocabulary Flash Cards