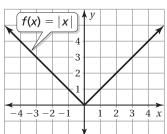
Glossary – Flash Cards

absolute value	absolute value equation Chapter 1	
absolute value function	absolute value inequality	
Chapter 5	Chapter .	
Addition Property of Equality	Addition Property of Inequality	
Review	Review	

An equation that contains an absolute value expression

$$|x| = 2$$
$$|x+1| = 5$$
$$3|2x+1| = 6$$

The distance between a number and 0 on a number line. The absolute value of a number *a* is written as |a|.


$$\left| -5 \right| = 5$$
$$\left| 5 \right| = 5$$

An inequality that contains an absolute value expression

$$|x| < 7$$
$$|x - 3| \ge 5$$
$$4|2x + 4| \le 16$$

A function that has a V-shaped graph that opens up or down; The most basic absolute value function is

$$f(x) = |x|.$$

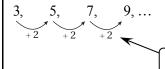
If you add the same number to each side of an inequality, the inequality remains true. a < b, then a + c < b + c. This property is also true for >, \leq , and \geq .

$$x - 3 > -10$$

$$+ 3 + 3$$

$$x > -7$$

Adding the same number to each side of an equation produces an equivalent equation. If a = b, then a + c = b + c.


$$x - 5 = -1$$

$$+ 5 + 5$$

$$x = 4$$

Addition Property of Zero	arithmetic sequence Chapter 5	
Associative Property of Addition	Associative Property of Multiplication	
asymptote Chapter 11	axis of symmetry Chapter 8	
base (of a power)	binomial Chapter 7	

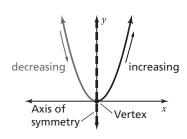
A sequence in which the difference between consecutive terms is the same; This difference is called the common difference.

Terms of an arithmetic sequence

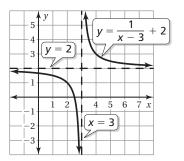
Common difference

The sum of any number and 0 is that number.

$$-5 + 0 = -5$$
$$a + 0 = a$$


Changing the grouping of factors does not change the product.

$$(-3 \bullet 4) \bullet 5 = -3 \bullet (4 \bullet 5)$$
$$(a \bullet b) \bullet c = a \bullet (b \bullet c)$$


Changing the grouping of addends does not change the sum.

$$(-3+4)+5=-3+(4+5)$$

 $(a+b)+c=a+(b+c)$

The vertical line that divides a parabola into two symmetric parts

A line that a graph approaches, but never intersects

A polynomial with two terms

$$x^2 + 3x$$

$$2x - 1$$

The base of a power is the common factor.

See power.

box-and-whisker plot Chapter 12	causation Chapter 12	
closed Chapter 6	coefficient	
common difference Chapter 5	common ratio Chapter 6	
Commutative Property of Addition	Commutative Property of Multiplication	

When a change in one variable results in a change in another variable; This produces a strong correlation between the two variables. time spent exercising and the number of calories burned	Displays a data set along a number line using medians; Quartiles divide the data set into four equal parts. The median (second quartile) divides the data set into two halves. The median of the lower half is the first quartile. The median of the upper half is the third quartile. See five-number summary. See five-number summary.	
The numerical factor of a term that contains a variable In the algebraic expression $-5x + 1$, -5 is the coefficient of the term $-5x$.	A set of numbers is closed under an operation when the operation performed on any two numbers in the set results in a number that is also in the set. The set of integers is closed under addition, subtraction, and multiplication; but not under division.	
The ratio between consecutive terms of a geometric sequence See geometric sequence.	The difference between consecutive terms of an arithmetic sequence See arithmetic sequence.	
Changing the order of factors does not change the product. $2 \cdot 8 = 8 \cdot 2$ $a \cdot b = b \cdot a$	Changing the order of addends does not change the sum. $2 + 8 = 8 + 2$ $a + b = b + a$	

completing the square Chapter 9	compound inequality Chapter 3	
compound interest Chapter 6	conjugates Chapter 10	
constant term Review	continuous domain Chapter 5	
coordinate plane	correlation	

An inequality formed by joining two inequalities with the word "and" or the word "or."

$$x \ge 2$$
 and $x < 5$

$$y \le -2 \text{ or } y > 1$$

$$4 < x - 1 < 7$$

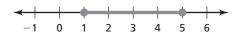
A method for solving quadratic equations; In this method, a constant c is added to the expression $x^2 + bx$ so that $x^2 + bx + c$ is a perfect square trinomial.

$$x^2 + 6x + 9 = (x + 3)^2$$

$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$

Used to simplify radical expressions that involve a sum or difference of radicals in the denominator

 $a\sqrt{b} + c\sqrt{d}$ and $a\sqrt{b} - c\sqrt{d}$ are conjugates.


Interest earned on the principal and on previously earned interest

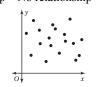
The balance y of an account earning compound interest is $y = P\left(1 + \frac{r}{n}\right)^{nt}$, where P is the

principal (initial amount), r is the annual interest rate (in decimal form), t is the time (in years), and n is the number of times interest is compounded per year.

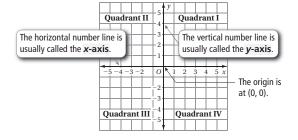
A set of input values that consists of all numbers in an interval

All numbers from 1 to 5

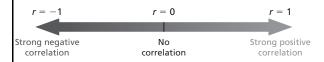
A term without a variable


In the expression 2x + 8, the term 8 is a constant term.

The relationship between paired data; The paired data have a positive correlation if y tends to increase as x increases, a negative correlation if y tends to decrease as x increases, and no correlation if x and y have no apparent relationship.


Positive relationship Negative relationship No relationship

A coordinate plane is formed by the intersection of a horizontal number line, usually called the *x*-axis, and a vertical number line, usually called the *y*-axis.


correlation coefficient Chapter 12	Cross Products Property Review	
data Review	degree of a monomial Chapter 7	
degree of a polynomial Chapter 7	denominator Review	
dependent variable Chapter 5	direct variation Chapter 11	

The cross products of a proportion are equal.

$$2 \bullet 6 = 3 \bullet 4$$

When a calculator uses linear regression to find a line of best fit, it often gives a value r called the correlation coefficient. This value tells whether the correlation is positive or negative, and how closely the equation models the data. Values of r range from -1 to 1.

The sum of the exponents of the variables in a monomial; The degree of a nonzero constant term is 0.

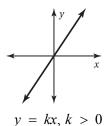
The degree of 5 is 0.

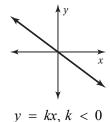
The degree of x^2 is 2.

The degree of $2xy^3$ is 1 + 3 = 4.

Information, often given in the form of numbers or facts

The number below the fraction bar in a fraction


In the fraction $\frac{2}{5}$, the denominator is 5.


The greatest degree of the terms of a polynomial

The degree of $6x^2 + x$ is 2.

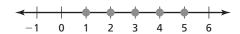
The degree of $x^5 + x^2 - 8$ is 5.

Two quantities x and y show direct variation when y = kx, where k is a nonzero constant.

The variable that represents output values of a function

In the function y = 2x - 3, y is the dependent variable.

discrete domain Chapter 5	discriminant Chapter 9	
distance formula Chapter 10	Distributive Property Review	
Division Property of Equality Review	Division Property of Inequality (Case 1)	
Division Property of Inequality (Case 2)	domain Chapter 5	


The expression $b^2 - 4ac$ of the associated equation $ax^2 + bx + c = 0$; The expression under the radical sign, $b^2 - 4ac$, in the quadratic formula; Used to determine the number of real solutions of a quadratic equation

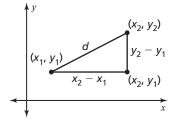
The value of the discriminant of the equation $3x^2 - 2x - 7 = 0$ is

$$b^2 - 4ac = (-2)^2 - 4(3)(-7) = 88.$$

A set of input values that consists of only certain numbers in an interval

Integers from 1 to 5

To multiply a sum or difference by a number, multiply each number in the sum or difference by the number outside the parentheses. Then evaluate.


$$3(2 + 9) = 3(2) + 3(9)$$

$$a(b + c) = ab + ac$$

$$3(2 - 9) = 3(2) - 3(9)$$

$$a(b - c) = ab - ac$$

The distance d between any two points (x_1, y_1) and (x_2, y_2) is given by the formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

If you divide each side of an inequality by the same positive number, the inequality remains true.

a < b and c > 0, then $\frac{a}{c} < \frac{b}{c}$. This property is also true for >, \le , and \ge .

$$4x > -12$$

$$\frac{4x}{4} > \frac{-12}{4}$$

$$x > -3$$

Dividing each side of an equation by the same number produces an equivalent equation. If a = b, then $a \div c = b \div c$, $c \ne 0$.

$$4x = -40$$

$$\frac{4x}{4} = \frac{-40}{4}$$

$$x = -10$$

The set of all input values of a function

For the ordered pairs (0, 6), (1, 7), (2, 8), and (3, 9), the domain is (0, 1, 2), and (3, 9).

If you divide each side of an inequality by the same negative number, the direction of the inequality symbol must be reversed for the inequality to

remain true. If a < b and c < 0, then $\frac{a}{c} > \frac{b}{c}$.

This property is also true for >, \leq , and \geq .

$$-5x > 30$$
$$\frac{-5x}{-5} < \frac{30}{-5}$$
$$x < -6$$

equation Review	equivalent equations	
excluded value	exponent	
Chapter 11	Review	
exponential decay	exponential decay function	
Chapter 6	Chapter	
exponential function Review	exponential growth	

Equations that have the same solution(s) $2x - 8 = 0 \text{ and } 2x = 8$	A mathematical sentence that uses an equal sign to show that two expressions are equal $4x = 16$ $a + 7 = 21$	
The number or variable that represents the number of times the base of a power is used as a factor See power.	A number that makes a rational function or a rational expression undefined. A number that makes the denominator equal to 0 The excluded value of $\frac{2}{x+5}$ is -5 .	
A function of the form $y = a(1 - r)^t$, where $a > 0$ and $0 < r < 1$ $y = 20(0.15)^t$ $y = 500\left(\frac{7}{8}\right)^t$ See exponential decay.	When a quantity decreases by the same factor over equal intervals of time See exponential decay function.	
When a quantity increases by the same factor over equal intervals of time See exponential growth function.	A function of the form $y = ab^x$, where $a \neq 0$, $b \neq 1$, and $b > 0$ $y = -2(5)^x$ $y = 2(0.5)^x$	

exponential growth function Chapter 6	expression Review	
extraneous solution Chapter 10	factor Review	
factored completely Chapter 7	factored form Chapter	
factoring by grouping Chapter 7	five-number summary Chapter 12	

A mathematical phrase containing numbers, operations, and/or variables

$$12 + 6, 18 + 3 \times 4,$$

 $8 + x, 6 \times a - b$

A function of the form $y = a(1 + r)^t$, where a > 0 and r > 0

$$y = 20(1.15)^{t}$$
$$y = 500\left(\frac{7}{5}\right)^{t}$$

See exponential growth.

An integer or expression that divides an integer or expression without leaving a remainder

-2, 3, and 4 are factors of 24. (x-4) and (x+3) are factors of x^2-x-12 . A solution of a transformed equation that is not a solution of the original equation

When you square each side of $x = \sqrt{x+2}$, the resulting equation has two solutions, x = -1 and x = 2. However, x = -1 is an extraneous solution because it does not satisfy the original equation.

A polynomial is in factored form when it is written as a product of factors.

$$x^{2} + 2x = x(x + 2)$$

 $x^{2} + 5x - 24 = (x - 3)(x + 8)$

A factorable polynomial with integer coefficients is said to be factored completely when no more factors can be found and it is written as the product of prime factors.

$$3x^3 - 18x^2 + 24x = 3x(x^2 - 6x + 8)$$
$$= 3x(x - 2)(x - 4)$$

The five numbers that make up a box-and-whisker plot (least value, first quartile, median, third quartile, and greatest value)

See box-and-whisker plot.

To factor polynomials with four terms, group the terms into pairs, factor the GCF out of each pair of terms, and look for a common binomial factor.

$$x^{3} + 3x^{2} + 2x + 6 = (x^{3} + 3x^{2}) + (2x + 6)$$
$$= x^{2}(x + 3) + 2(x + 3)$$
$$= (x + 3)(x^{2} + 2)$$

focus	FOIL Method	
Chapter 8	Chapter 7	
function	function notation	
Chapter 5	Chapter 5	
geometric sequence	graph of an inequality	
Chapter 6	Chapter 3	
graph of an linear inequality Chapter 3	graph of a system of linear inequalities	

A shortcut for multiplying two binomials; To multiply two binomials using the FOIL Method, find the sum of the products of the First terms, Outer terms, Inner terms, and Last terms.

F
$$(x + 1)(x + 2)$$
 $x(x) = x^2$

O
$$(x + 1)(x + 2)$$
 $x(2) = 2x$

I
$$(x + 1)(x + 2)$$
 $1(x) = x$

L
$$(x + 1)(x + 2)$$
 1(2) = 2

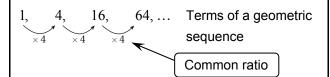
A fixed point on the interior of a parabola that lies on the axis of symmetry; A parabola "wraps" around the focus.

For functions of the form $y = ax^2$, the focus is $\left(0, \frac{1}{4a}\right)$.

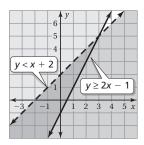
A way to name a function using the f(x) instead of y; The notation f(x) is read as "the value of f at x" or "f of x."

The y = 5x + 2 can be written in function notation as f(x) = 5x + 2.

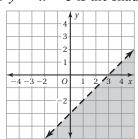
A relationship that pairs each input with exactly one output


The ordered pairs (0,1), (1, 2), (2, 4), and (3, 6) represent a function.

Ordered Pairs	Input	Outpu
(0, 1)	0	1
(1, 2)	1 +	2
(2, 4)	2 —	→ 4
(3, 6)	3 +	→ 6


A graph that shows all of the solutions of an inequality on a number line

x > -2

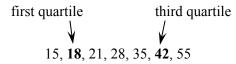

A sequence in which the ratio between consecutive terms is the same; This ratio is called the common ratio.

A graph of all the solutions of a system

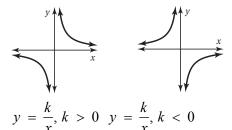
A graph in two variables that shows all of the solutions of an inequality in a coordinate plane. The graph of y = x - 3 is the shaded half-plane.

greatest common factor (GCF)	half-planes Chapter 3
hypotenuse Chapter 10	independent variable Chapter 5
inequality Chapter 3	input Review
integers Review	interest Review

In a coordinate plane, the regions on either side of a boundary line See graph of a linear inequality.	The largest of the common factors of two or more nonzero integers or expressions The common factors of 12 and 20 are 1, 2, and 4. So the GCF of 12 and 20 is 4. The common factors of $3x^3$ and $6x^2$ are 1, 3, x , x^2 , and $3x^2$. So the GCF of $3x^3$ and $6x^2$ is $3x^2$.
The variable that represents input values of a function In the function $y = 5x - 8$, x is the independent variable.	The side of a right triangle that is opposite the right angle
A number on which a function operates See function.	A mathematical sentence that compares expressions; It contains the symbols $<$, $>$, \le , or \ge . $x - 4 < -14$ $x + 5 \ge -67$
Money paid or earned for the use of money See compound interest and simple interest.	The set of whole numbers and their opposites $\dots -3, -2, -1, 0, 1, 2, 3, \dots$

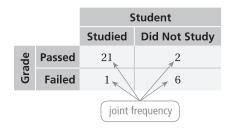

interquartile range Chapter 12	inverse function Chapter 11
inverse relation Chapter 11	inverse variation Chapter 11
irrational number	joint frequency Chapter 12
least common denominator (LCD) of rational expressions	legs Chapter 10

When a relation and its inverse are functions, they are called inverse functions. The inverse of a function f is written as $f^{-1}(x)$. To find the inverse of a function represented by an equation, switch x and y and then solve for y.


$$f(x) = 2x - 5$$
 and $f^{-1}(x) = \frac{1}{2}x + \frac{5}{2}$ are inverse functions.

The difference of the third quartile of a data set and the first quartile of the data set; It represents the range of the middle half of the data.

The interquartile range of the data set is 42 - 18 = 24.


Two quantities x and y show inverse variation when $y = \frac{k}{x}$, where k is a nonzero constant.

Switches the input and output values of a relation; If a relation contains (a, b), then the inverse relation contains (b, a).

$$(-4, 7), (-2, 4), (0, 1), (2, -2), (4, -5)$$

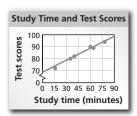
 $(7, -4), (4, -2), (1, 0), (-2, 2), (-5, 4)$

Each entry in a two-way table

A number that cannot be written as the ratio of two integers

$$\pi, \sqrt{14}$$

The two sides of a right triangle that form the right angle


See hypotenuse.

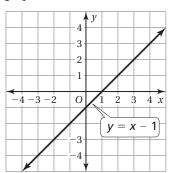
The least common multiple of the denominators of two or more rational expressions

The least common denominator of $\frac{3}{10x^2}$ and $\frac{5}{12x}$ is the least common multiple of $10x^2$ and 12x, or $60x^2$

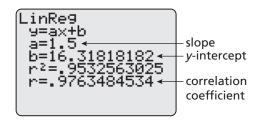
line of best fit Chapter 12	line of fit Chapter 12
linear equation Chapter 2	linear function Chapter 5
linear inequality in two variables	linear regression Chapter 12
literal equation Chapter 1	marginal frequencies Chapter 12

A line drawn on a scatter plot that is close to most of the data points; It can be used to estimate data on a graph.

A precise line that best models a set of data


See linear regression.

A function whose graph is a nonvertical line; A linear function can be written in the form y = mx + b.



An equation whose graph is a line

$$y = x - 1$$

The process used to find the line of best fit for a set of data

An inequality that is the result of replacing the equal sign in a linear equation with <, \le , >, or \ge .

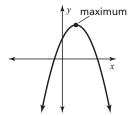
$$2x = y < -3$$
$$x - 3y \ge 8$$

The sums of the rows and columns in a two-way table

		Age			
		12-13	14-15	16-17	Total
Student	Rides Bus	24	12	14	50
Stuc	Does Not Ride Bus	16	13	21	50
	Total	40	25	35	100

An equation that has two or more variables

$$2y + 6x = 12$$


maximum value Chapter 8	mean Review
measure of central tendency Chapter 12	measure of dispersion Chapter 12
median Review	minimum value Chapter 8
mode Review	monomial Chapter 7

The sum of the values in a data set divided by the number of data values

The y-coordinate of the vertex of the graph of $y = ax^2 + bx + c$ when a < 0

The mean of the values 7, 4, 8, and 9 is

$$\frac{7+4+8+9}{4} = \frac{28}{4} = 7.$$

A measure that describes the spread of a data set

The range and standard deviation are measures of dispersion.

A measure that represents the center of a data set

The mean, median, and mode are all measures of central tendency.

The y-coordinate of the vertex of the graph of $y = ax^2 + bx + c$ when a > 0

For a data set with an odd number of ordered values, the median is the middle data value. For a data set with an even number of ordered values, the median is the mean of the two middle values.

The median of the data set 24, 25, 29, 33, 38 is 29 because 29 is the middle value.

A number, a variable, or a product of a number and one or more variables with whole number exponents

$$-5$$

$$0.5y^2$$

$$4x^2y$$

The data value or values that occur most often; Data can have one mode, more than one mode, or no mode.

The modes of the data set 3, 4, 4, 7, 7, 9, 12 are 4 and 7 because they occur most often.

Multiplication Properties of Zero and One	Multiplication Property of Equality
Multiplication Property of Inequality (Case 1)	Multiplication Property of Inequality (Case 2)
negative exponent	negative number
nonlinear function Chapter 5	<i>n</i> th root Chapter 6

Multiplying each side of an equation by the same number produces an equivalent equation. If a = b, then $a \cdot c = b \cdot c$.

$$-\frac{2}{3}x = 8$$

$$-\frac{3}{2} \bullet \left(-\frac{2}{3}x\right) = -\frac{3}{2} \bullet 8$$

$$x = -12$$

The product of any number and 0 is 0. The product of any number and 1 is that number.

$$-5 \bullet 0 = 0$$

$$a \bullet 0 = 0$$

$$-6 \bullet 1 = -6$$

$$a \bullet 1 = a$$

If you multiply each side of an inequality by the same negative number, the direction of the inequality symbol must be reversed for the inequality to remain true. If a < b and c < 0, then $a \bullet c > b \bullet c$. This property is also true for >, \leq , or \geq .

$$\frac{x}{-6} < 3$$

$$-6 \cdot \frac{x}{-6} > -6 \cdot 3$$

$$x > -18$$

If you multiply each side of an inequality by the same positive number, the inequality remains true. If a < b and c > 0, then $a \bullet c < b \bullet c$. This property is also true for >, \le , or \ge .

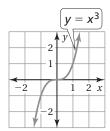
$$\frac{x}{2} < -9$$

$$2 \bullet \frac{x}{2} < 2 \bullet (-9)$$

$$x < -18$$

A number less than 0

$$-0.25, -10, -500$$


For any integer n and any nonzero number a, a^{-n} is the reciprocal of a^n .

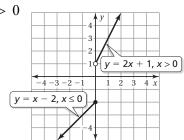
$$a^{-n} = \frac{1}{a^n}$$

When $b^n = a$ for an integer n greater than 1, b is an nth root of a.

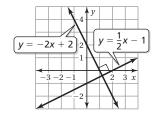
$$\sqrt[3]{64} = \sqrt[3]{4 \cdot 4 \cdot 4} = 4$$

 $\sqrt[n]{a} = n$ th root of a

A function that does not have a constant rate of change; The graph of a nonlinear function is not a line.


number line Review	numerator Review
ordered pair Review	origin <i>Review</i>
output Review	parabola Chapter 8
perfect square Review	perfect square trinomial

The number above the fraction bar in a fraction In the fraction $\frac{2}{5}$, the numerator is 2.	A line whose points are associated with numbers that increase from left to right A line whose points are associated with numbers that increase from left to right
The point, represented by the ordered pair (0, 0,) where the x-axis and the y-axis meet in a coordinate plane See coordinate plane.	A pair of numbers (x, y) used to locate a point in a coordinate plane; The first number is the x -coordinate, and the second number is the y -coordinate. The x -coordinate of the point $(-2, 1)$ is -2 , and the y -coordinate is 1.
The U-shaped graph of a quadratic function The U-shaped graph of a quadratic function $y = x^2 - 4x + 1$	A number produced by evaluating a function using a given input See function.
Trinomials of the form $a^2 + 2ab + b^2$ and $a^2 - 2ab + b^2$. $x^2 + 6x + 9 = x^2 + 2(3)x + 3^2$ $x^2 - 10x + 25 = x^2 - 2(5)x + 5^2$	A number with integers as its square roots 16, 25, 81


perpendicular lines Chapter 2	piecewise function Chapter 5
plane Review	point-slope form Chapter 2
polynomial Chapter 7	positive number
power Review	Power of a Power Property Review

A function defined by two or more equations

$$y = \begin{cases} x - 2, & \text{if } x \le 0 \\ 2x + 1, & \text{if } x > 0 \end{cases}$$

Two lines in the same plane that intersect to form right angles; Two nonvertical lines are perpendicular if and only if the product of their slopes is -1.

A linear equation written in the form $y - y_1 = m(x - x_1)$; The line passes through the point (x_1, y_1) and the slope of the line is m.

$$y - 1 = \frac{2}{3}(x + 6)$$

A flat surface that extends without end in all directions

A number greater than 0

A monomial or a sum of monomials; Each monomial is called a term of the polynomial.

$$5x + 2$$
$$x^2 + 5x + 2$$

To find a power of a power, multiply the exponents.

$$(3^4)^2 = 3^{4 \cdot 2} = 3^8$$

 $(a^m)^n = a^{mn}$

A product of repeated factors

base exponent
$$\left(\frac{1}{2}\right)^{5} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$
Power $\frac{1}{2}$ is used as a factor 5 times.

Power of a Product Property Review	Power of a Quotient Property Chapter 1
prime number Review	prime polynomial Chapter 7
principal Review	product Review
Product of Powers Property Review	Product Property of Square Roots

To find a power of a quotient, find the power of the numerator and the power of the denominator and divide.

$$\left(\frac{3}{5}\right)^6 = \frac{3^6}{5^6}$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

To find a power of a product, find the power of each factor and multiply.

$$(5 \bullet 7)^4 = 5^4 \bullet 7^4$$

$$(ab)^m = a^m b^m$$

A polynomial that cannot be factored as a product of polynomials with integer coefficients

$$2x + 3$$

$$x^2 - x + 5$$

$$x^2 + 2x + 9$$

A whole number greater than 1 whose only factors are 1 and itself

The result when two or more numbers or expressions are multiplied

The product of 4 and -3 is $4 \times (-3)$, or -12. The product of x + 2 and x - 5 is

$$(x + 2)(x - 5)$$
, or $x^2 - 3x - 10$.

An amount of money borrowed or deposited

You deposit \$200 in an account that earns 4% compound interest per year. The principal is \$200.

The square root of a product equals the product of the square roots of the factors.

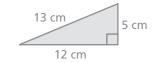
$$\sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$$

 $\sqrt{xy} = \sqrt{x} \cdot \sqrt{y}$, where $x \ge 0$ and $y \ge 0$

To multiply powers with the same base, add their exponents.

$$3^7 \times 3^{10} = 3^{7+10} = 3^{17}$$

$$a^m \bullet a^n = a^{m+n}$$


Pythagorean Theorem Chapter 10	quadratic equation Chapter 9
quadratic formula Chapter 9	quadratic function Chapter 8
quartile	quotient
Quotient of Powers Property Review	Quotient Property of Square Roots

A nonlinear equation that can be written in the standard form $ax^2 + bx + c = 0$, where $a \ne 0$

$$x^2 + 4x = 12$$
$$-x^2 + 1 = 2x$$

In any right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

$$a^2 + b^2 = c^2$$

$$5^2 + 12^2 = 13^2$$

A nonlinear function that can be written in the standard form $y = ax^2 + bx + c$, where $a \ne 0$

$$y = -16x^2 + 48x + 6$$

The formula below that can be used to find the real solutions of the quadratic equation $ax^2 + bx + c$, where $a \ne 0$ and $b^2 - 4ac \ge 0$:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

To solve $2x^2 + 13x - 7 = 0$, substitute 2 for a, 13 for b, and -7 for c in the quadratic formula.

$$x = \frac{-13 \pm \sqrt{13^2 - 4(2)(-7)}}{2(2)} \to x = \frac{1}{2} \text{ or } x = -7$$

The result of a division

The quotient of 10 and -5 is $10 \div (-5)$, or -2.

Divides a data set into four equal parts

See box-and-whisker plot.

The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

$$\sqrt{\frac{7}{9}} = \frac{\sqrt{7}}{\sqrt{9}} = \frac{\sqrt{7}}{3}$$

$$\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}, \text{ where } x \ge 0 \text{ and } y > 0$$

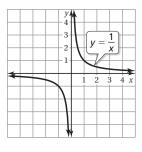
To divide powers with the same base, subtract their exponents.

$$\frac{9^7}{9^3} = 9^{7-3} = 9^4$$

$$\frac{a^m}{a^n} = a^{m-n}$$
, where $a \neq 0$

radical sign Review	radicand Review
range Chapter 5	range (of a data set) Chapter 12
rate Review	ratio Review
rational equation Chapter 11	rational exponents Review

The number or expression under a radical sign The radicand of $\sqrt{25}$ is 25. The radicand of $\sqrt{x+1}$ is $x+1$.	The symbol $\sqrt{\ }$ which is used to represent a square root $\sqrt{25} = 5$ $-\sqrt{49} = -7$ $\pm\sqrt{100} = \pm10$
The difference between the greatest value and the least value of a data set; The range describes how spread out the data are. The range of the data set 12, 16, 18, 22, 27, 35 is $35 - 12 = 23$.	The set of all output values of a function For the ordered pairs (0, 6), (1, 7), (2, 8), and (3, 9), the range is 6, 7, 8, and 9.
A comparison of two quantities using division; The ratio of a to b (where $b \neq 0$) can be written as a to b , a : b , or $\frac{a}{b}$.	A ratio of two quantities with different units You read 3 books every 2 weeks.
The <i>n</i> th root of a positive number <i>a</i> can be written as a power with base <i>a</i> and an exponent of $1/n$. $\sqrt[4]{81} = 81^{1/4}$ $\sqrt[n]{a} = a^{1/n}$	An equation that contains one or more rational expressions $\frac{5}{x+4} = \frac{4}{x-4}$


rational expression Chapter 11	rational function Chapter 11
rational number Review	rationalizing the denominator Chapter 10
real numbers	recursive rule Chapter 6
relation Chapter 5	residual Chapter 12

A function of the form

$$y = \frac{\text{polynomial}}{\text{polynomial}}$$
, where

the denominator does not equal 0; The most basic rational function is

$$y = \frac{1}{x}$$
.

An expression that can be written as a fraction whose numerator and denominator are polynomials

$$\frac{3}{x+1}$$

$$\frac{x-2}{x^2+16}$$

The process of eliminating a radical from the denominator of an expression by multiplying the expression by an appropriate form of 1.

$$\frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} \bullet \frac{\sqrt{10}}{\sqrt{10}} = \frac{\sqrt{10}}{\sqrt{100}} = \frac{\sqrt{10}}{10}$$

$$\sqrt{\frac{1}{3}} = \frac{\sqrt{1}}{\sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{9}} = \frac{\sqrt{3}}{3}$$

A number that can be written as $\frac{a}{b}$, where a and b are integers and $b \neq 0$

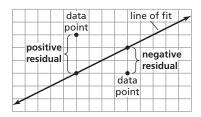
$$3 = \frac{3}{1}, \qquad -\frac{2}{5} = \frac{-2}{5}$$

$$0.25 = \frac{1}{4}, \qquad 1\frac{1}{3} = \frac{4}{3}$$

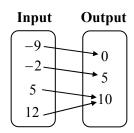
Gives the beginning term(s) of a sequence and an equation that indicates how any term a_n in the sequence relates to the previous term

 $a_n = a_{n-1} + d$, where d is the common difference

$$a_1 = 2, a_n = a_{n-1} + 3$$

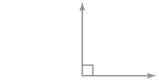

 $a_n = r \bullet a_{n-1}$, where r is the common ratio

$$a_1 = 1, a_n = 3a_{n-1}$$


The set of all rational and irrational numbers

$$4, -6.5, \pi, \sqrt{14}$$

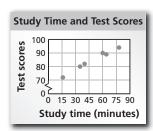
The difference between the y-value of a data point and the corresponding y-value found using the line of fit; A residual can be positive, negative, or zero.


Pairs inputs with outputs; A relation that pairs each input with exactly one output is a function.

right angle	right triangle
Review	Review
rise	roots
Chapter 2	Chapter 7
run	scatter plot
Chapter 2	Chapter 12
sequence Chapter 5	simple interest

A triangle that has one right angle

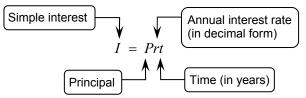
An angle whose measure is 90°


The solutions of a polynomial equation

The roots of the equation (x + 9)(x - 4) = 0 are x = -9 and x = 4.

The change in y between two points on a line

See slope.


A graph that shows the relationship between two data sets using ordered pairs in a coordinate plane

The change in x between two points on a line

See slope.

Money paid or earned only on the principal

You put \$200 into an account. The account earns 5% simple interest per year. The interest earned after 3 years is $$200 \times 0.05 \times 3$, or \$30. The account balance is \$200 + \$30 = \$230 after 3 years.

An ordered list of numbers

5, 10, 15, 20, ...,
$$a_n$$
, ...
2, 4, 8, 16, ..., a_n , ...

simplest form of a radical expression Chapter 10	simplest form of a rational expression
slope Chapter 2	slope-intercept form Chapter 2
solution of an equation	solution of an inequality Chapter 3
solution of a linear equation Chapter 2	solution of a linear inequality Chapter 3

A rational expression whose numerator and denominator have no common factors except 1

The simplest form of $\frac{4x}{2x(x+7)}$ is $\frac{2}{x+7}$.

A radical expression that has no perfect square factors other than 1 in the radicand, no fractions in the radicand, and no radicals appearing in the denominator of a fraction

$$\sqrt{27} = 3\sqrt{3}$$

$$\frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

A linear equation written in the form y = mx + b; The slope of the line is m and the y-intercept of the line is b.

The slope is 1 and the *y*-intercept is 2.

A ratio of the change in y (the rise) to the change in x (the run) between any two points, (x_1, y_1) and (x_2, y_2) on a line; It is a measure of the steepness of a line.

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x}$$

= $\frac{y_2 - y_1}{x_2 - x_1}$ (x_1, y_1) Rise = $y_2 - y_1$

A value that makes an inequality true

A solution of the inequality x + 3 > -9 is x = 2.

A value that makes an equation true

6 is the solution of the equation x - 4 = 2.

An ordered pair (x, y) that makes a linear inequality true; All of the points in the shaded half-plane are solutions.

(2, 4) is a solution of -x + 2y > 2.

See graph of a linear inequality.

An ordered pair (x, y) that makes a linear equation true; All of the points on the line are solutions.

$$(2, -4)$$
 is a solution of $x + 2y = -6$

solution set Chapter 3	solution of a system of linear equations
solution of a system of linear inequalities	square root Review
square root equation Chapter 10	square root function Chapter 10
standard deviation Chapter 12	standard form Chapter 2

An ordered pair that is a solution of each equation in a system

The set of all solutions of an inequality

(1, -3) is the solution of the following system of linear equations.

$$4x - y = 7$$
$$2x + 3y = -7$$

If $b^2 = a$, then b is a square root of a. The radical sign, $\sqrt{}$, represents a nonnegative square root.

An ordered pair that is a solution of each inequality in a system

The square roots of 25 are 5 and -5 because $5^2 = 25$ and $(-5)^2 = 25$. So, $\sqrt{25} = 5$ and $-\sqrt{25} = -5$.

(-2, 5) is a solution of the following system of linear inequalities.

$$x - y < 4$$
$$2x - y \ge -9$$

A function that contains a square root with the independent variable in the radicand; The most basic square root function is $y = \sqrt{x}$.

$$y = 3\sqrt{x-5}$$
$$y = -\sqrt{x+1} + 2$$

An equation that contains a square root with a variable in the radicand

$$\sqrt{x} + 5 = 13$$
$$\sqrt{2x - 1} = \sqrt{x + 4}$$

A linear equation written in the form ax + by = c, where a and b are not both zero

$$-2x + 3y = -6$$

A measure of how much a typical value in a data set differs from the mean; It is given by standard deviation

$$\sqrt{\frac{\left(x_1-\overline{x}\right)^2+\left(x_2-\overline{x}\right)^2+\cdots+\left(x_n-\overline{x}\right)^2}{n}}$$

where n is the number of values in the data set. The symbol \overline{x} represents the mean. It is read as "x-bar."

step function Chapter 5	Subtraction Property of Equality
Subtraction Property of Inequality	system of linear equations Chapter 4
system of linear inequalities Chapter 4	term (of a sequence) Chapter 5
terms (of an expression)	theorem Chapter 10

Subtracting the same number from each side of an equation produces an equivalent equation. If a = b, then a - c = b - c.

$$x + 10 = -12$$

$$-10 - 10$$

$$x = -22$$

A piecewise function defined by constant values over its domain

$$f(x) = \begin{cases} 50, & \text{if } 0 < x \le 1 \\ 75, & \text{if } 1 < x \le 2 \\ 100, & \text{if } 2 < x \le 3 \\ 125, & \text{if } 3 < x \le 4 \\ 150, & \text{if } 4 < x \le 5 \end{cases}$$

A set of two or more linear equations in the same variables; also called a linear system

$$y = x + 1$$
 Equation 1
 $y = 2x - 7$ Equation 2

If you subtract the same number from each side of an inequality, the inequality remains true. If a < b, then a - c < b - c. This property is also true for >, \le , and \ge .

$$x + 7 > -20$$

$$\frac{-7}{x} = \frac{-7}{27}$$

Each number in a sequence; Each term a_n has a specific position n in the sequence.

5, 10, 15, 20, 25, ...,
$$a_n$$
, ...

1st position 3rd position n th position

A set of two or more linear inequalities in the same variables

$$y < x + 2$$
 Inequality 1
 $y \ge 2x - 1$ Inequality 2

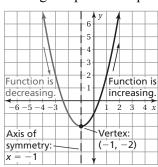
A rule in mathematics

The Pythagorean Theorem

The parts of an expression that are added together

The terms of $x^2 - 2x + 3$ are x^2 , -2x, and 3.

trinomial Chapter 7	two-way table Chapter 12
variable Review	vertex (of a parabola) Chapter 8
vertex form Chapter 8	Vertical Line Test Chapter 5
whole numbers	x-axis Review

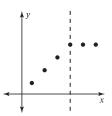

Displays two categories of data collected from the same source

		Fundraiser	
		No	Yes
Gender	Female	22	51
Gen	Male	30	29

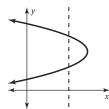
A polynomial with three terms

$$x^2 + 5x + 2$$

The lowest or highest point on a parabola



A symbol, usually a letter, that represents one or more numbers


x is a variable in 2x + 1.

A graph represents a function when no vertical line passes through more than one point on the graph.

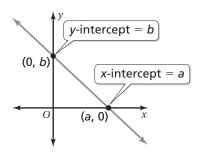
Function

Not a function

A quadratic function of the form $y = a(x - h)^2 + k$, where $a \ne 0$; The vertex of the parabola is (h, k).

$$y = (x - 2)^{2}$$

 $y = -2(x + 4)^{2} + 3$


The horizontal number line in a coordinate plane

See coordinate plane.

The numbers 0, 1, 2, 3, 4, ...

x-coordinate Review	<i>x</i> -intercept Chapter 2
y-axis Review	y-coordinate Review
y-intercept zero (of a function	
zero exponent Review	Zero-Product Property Chapter 7

The *x*-coordinate of the point where a line crosses the *x*-axis

The first coordinate in an ordered pair, which indicates how many units to move to the left or right from the origin

In the ordered pair (3, 5), the *x*-coordinate is 3.

The second coordinate in an ordered pair, which indicates how many units to move up or down from the origin

In the ordered pair (3, 5), the y-coordinate is 5.

The vertical number line in a coordinate plane

See coordinate plane.

An x-value for which f(x) = 0; A zero is located at the x-intercept of the graph of the function.

The zero of f(x) = 2x - 6 is 3 because f(3) = 0.

The *y*-coordinate of the point where a line crosses the *y*-axis

See x-intercept.

If the product of two real numbers is 0, then at least one of the numbers is 0. If a and b are real numbers and ab = 0, then a = 0 or b = 0.

$$(x + 6)(x - 5) = 0$$

 $x + 6 = 0$ or $x - 5 = 0$
 $x = -6$ or $x = 5$

For any nonzero number a, $a^0 = 1$.

$$10^{0} = 1$$

 $(-5)^{0} = 1$
 $x^{0} = 1$, where $x \neq 0$