7.1 Findfing Square Roots

Essential Qusestion how can you find the dimensions of a square

 or a circle when you are given its area?When you multiply a number by itself, you square the number.

```
Symbol for squaring }\longrightarrow\mp@subsup{4}{}{2}=4\cdot
is the exponent 2. = 16 4 squared is 16.
```

To "undo" this, take the square root of the number.

ACIIVIJY: Finding Square Roots

Work with a partner. Use a square root symbol to write the side length of the square. Then find the square root. Check your answer by multiplying.
a. Sample: $s=\sqrt{121}=11 \mathrm{ft}$

Check

11

$\times 11$
11
110
121
b.

c.

d.

e.

f.

g. \quad Area $=\frac{4}{9} \mathrm{ft}^{2}$

2 ACJIVIJY: Using Square Roots

Work with a partner. Find the radius of each circle.
a.

b.

c.

Area $=0.25 \pi \mathrm{ft}^{2}$
d.

3 ACTIVIJY: The Period of a Pendulum
 3 ACJUHJ: Jhe period of a rejaujum

Work with a partner.

The period of a pendulum is the time (in seconds)
it takes the pendulum to swing back and forth.

Math Practice

Calculate Accurately
How can you use the graph to help you determine whether you calculated the values of T correctly?

The period T is represented by $T=1.1 \sqrt{L}$, where L is the length of the pendulum (in feet).

Copy and complete the table. Then graph the function. Is the function linear?

\boldsymbol{L}	1.00	1.96	3.24	4.00	4.84	6.25	7.29	7.84	9.00
\boldsymbol{T}									

What Is Your Answer?

4. IN YOUR OWN WORDS How can you find the dimensions of a square or a circle when you are given its area? Give an example of each. How can you check your answers?

Key Vocabulary

square root, p. 290
perfect square, p. 290
radical sign, p. 290
radicand, p. 290

A square root of a number is a number that, when multiplied by itself, equals the given number. Every positive number has a positive and a negative square root. A perfect square is a number with integers as its square roots.

EXAMPLE (1) Finding Square Roots of a Perfect Square

Find the two square roots of 49.

Study Tip

Zero has one square root, which is 0 .

$$
7 \cdot 7=49 \text { and }(-7) \cdot(-7)=49
$$

$\therefore \quad$ So, the square roots of 49 are 7 and -7 .
The symbol $\sqrt{ }$ is called a radical sign. It is used to represent a square root. The number under the radical sign is called the radicand.

Positive Square Root, $\sqrt{ }$	Negative Square Root, $-\sqrt{ }$	Both Square Roots, $\pm \sqrt{ }$
$\sqrt{16}=4$	$-\sqrt{16}=-4$	$\pm \sqrt{16}= \pm 4$

EXAMPLE 2 finding Square Roots

Find the square root(s).

a. $\sqrt{25}$ $\therefore \quad$ Because $5^{2}=25, \sqrt{25}=\sqrt{5^{2}}=5$.
$\sqrt{25}$ represents the
positive square root.
b. $-\sqrt{\frac{9}{16}}$
$-\sqrt{\frac{9}{16}}$ represents the negative square root.

$$
\therefore \quad \text { Because }\left(\frac{3}{4}\right)^{2}=\frac{9}{16},-\sqrt{\frac{9}{16}}=-\sqrt{\left(\frac{3}{4}\right)^{2}}=-\frac{3}{4} \text {. }
$$

$\pm \sqrt{2.25}$ represents both the positive c. $\pm \sqrt{2.25}$ and the negative square roots.

$$
\because \quad \text { Because } 1.5^{2}=2.25, \pm \sqrt{2.25}= \pm \sqrt{1.5^{2}}=1.5 \text { and }-1.5
$$

On Your Own

Now You're Ready
Exercises 7-18

Find the two square roots of the number.

1. 36
2. 100
3. 121

Find the square root(s).
4. $-\sqrt{1}$
5. $\pm \sqrt{\frac{4}{25}}$
6. $\sqrt{12.25}$

Squaring a positive number and finding a square root are inverse operations. You can use this relationship to evaluate expressions and solve equations involving squares.

EXAMPLE

3 Evaluating Expressions Involving Square Roots

Evaluate each expression.

a. $5 \sqrt{36}+7=5(6)+7 \quad$ Evaluate the square root.

$$
\begin{array}{ll}
=30+7 & \\
=37 & \text { Multiply. } \\
= & \text { Add. }
\end{array}
$$

b. $\frac{1}{4}+\sqrt{\frac{18}{2}}=\frac{1}{4}+\sqrt{9} \quad$ Simplify.

$$
\begin{array}{ll}
=\frac{1}{4}+3 & \\
=3 \frac{1}{4} &
\end{array}
$$

c. $(\sqrt{81})^{2}-5=81-5 \quad$ Evaluate the power using inverse operations.

$$
=76 \quad \text { Subtract. }
$$

EXAMPLE

The area of a crop circle is 45,216 square feet. What is the radius of the crop circle? Use 3.14 for π.

$$
\begin{aligned}
A & =\pi r^{2} & & \text { Write the formula for the area of a circle. } \\
45,216 & \approx 3.14 r^{2} & & \text { Substitute } 45,216 \text { for } A \text { and } 3.14 \text { for } \pi . \\
14,400 & =r^{2} & & \text { Divide each side by } 3.14 . \\
\sqrt{14,400} & =\sqrt{r^{2}} & & \text { Take positive square root of each side. } \\
120 & =r & & \text { Simplify. }
\end{aligned}
$$

\therefore The radius of the crop circle is about 120 feet.

On Your Own

Evaluate the expression.

7. $12-3 \sqrt{25}$
8. $\sqrt{\frac{28}{7}}+2.4$
9. $15-(\sqrt{4})^{2}$
10. The area of a circle is 2826 square feet. Write and solve an equation to find the radius of the circle. Use 3.14 for π.

Vocabulary and Concept Check

1. VOCABULARY Is 26 a perfect square? Explain.
2. REASONING Can the square of an integer be a negative number? Explain.
3. NUMBER SENSE Does $\sqrt{256}$ represent the positive square root of 256 , the negative square root of 256 , or both? Explain.

Practice and Problem Solving

Find the dimensions of the square or circle. Check your answer.
4.

5. \quad Area $=1.69 \mathrm{~km}^{2}$

6. Area $=64 \pi$ in. 2

Find the two square roots of the number.
(1)
7. 9
8. 64
9. 4
10. 144

Find the square root(s).
(2)
11. $\sqrt{625}$
12. $\pm \sqrt{196}$
13. $\pm \sqrt{\frac{1}{961}}$
14. $-\sqrt{\frac{9}{100}}$
15. $\pm \sqrt{4.84}$
16. $\sqrt{7.29}$
17. $-\sqrt{361}$
18. $-\sqrt{2.25}$
19. ERROR ANALYSIS Describe and correct the error in finding the square roots.

$$
\pm \pm \sqrt{\frac{1}{4}}=\frac{1}{2}
$$

Evaluate the expression.
20. $(\sqrt{9})^{2}+5$
21. $28-(\sqrt{144})^{2}$
22. $3 \sqrt{16}-5$
23. $10-4 \sqrt{\frac{1}{16}}$
24. $\sqrt{6.76}+5.4$
25. $8 \sqrt{8.41}+1.8$
26. $2\left(\sqrt{\frac{80}{5}}-5\right)$
27. $4\left(\sqrt{\frac{147}{3}}+3\right)$
28. NOTEPAD The area of the base of a square notepad is 2.25 square inches. What is the length of one side of the base of the notepad?
29. CRITICAL THINKING There are two square roots of 25. Why is there only one answer for the radius of the button?

Copy and complete the statement with $<,>$, or $=$.
30. $\sqrt{81}$
8
31. $0.5 \quad \sqrt{0.25}$
32. $\frac{3}{2} \sqrt{\frac{25}{4}}$
33. SAILBOAT The area of a sail is $40 \frac{1}{2}$ square feet. The base and the height of the sail are equal. What is the height of the sail (in feet)?
34. REASONING Is the product of two perfect squares always a perfect square? Explain your reasoning.
35. ENERGY The kinetic energy K (in joules) of a falling apple is represented by $K=\frac{v^{2}}{2}$, where v is the speed of the apple (in meters per second). How fast is the apple
 traveling when the kinetic energy is 32 joules?

36. PRECISION The areas of the two watch faces have a ratio of $16: 25$.
a. What is the ratio of the radius of the smaller watch face to the radius of the larger watch face?
b. What is the radius of the larger watch face?
37. WINDOW The cost C (in dollars) of making a square window with a side length of n inches is represented by $C=\frac{n^{2}}{5}+175$. A window costs $\$ 355$. What is the length (in feet) of the window?
38. Geometry . The area of the triangle is represented by the formula $A=\sqrt{s(s-21)(s-17)(s-10)}$, where s is equal to half the perimeter. What is the height of the triangle?

Fair Game Review what you learned in previous grades \& lessons
Write in slope-intercept form an equation of the line that passes through the given points. (Section 4.7)
39. $(2,4),(5,13)$
40. $(-1,7),(3,-1)$
41. $(-5,-2),(5,4)$
42. MULTIPLE CHOICE What is the value of x ? (Section 3.2)
(A) 41
(B) 44
(C) 88
(D) 134

