5.4

Solving Special Systems of Linear Equations

ESSential Qusestion can a system of linear equations have no

 solution? Can a system of linear equations have many solutions?
ACTIVITY: Writing a System of Linear Equations

Work with a partner. Your cousin is 3 years older than you. You can represent your ages by two linear equations.

$$
\begin{array}{ll}
y=t & \text { Your age } \\
y=t+3 & \text { Your cousin's age }
\end{array}
$$

a. Graph both equations in the same coordinate plane.
b. What is the vertical distance between the two graphs? What does this distance represent?
c. Do the two graphs intersect? Explain what this means in terms of your age and your cousin's age.

2 ACIVIJY: Using a Jable to Solve a System

Systems of Equations In this lesson, you will

- solve systems of linear equations with no solution or infinitely many solutions.

Work with a partner. You invest $\$ 500$ for equipment to make dog backpacks. Each backpack costs you $\$ 15$ for materials. You sell each backpack for \$15.
a. Copy and complete the table for your cost C and your revenue R.

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9	10
\boldsymbol{C}											
\boldsymbol{R}											

b. When will you break even? What is wrong?

(3) ACIIVITY: Using a Graph to Solve a Puzzle

Math Practice

Analyze Relationships
What do you know about the graphs of the two equations? How does this relate to the number of solutions?

Work with a partner. Let x and y be two numbers. Here are two clues about the values of x and y.

Words

Clue 1:
y is 4 more than twice the value of x.

Clue 2:
The difference of $3 y$ and $6 x$ is 12 .

Equation
$y=2 x+4$
$3 y-6 x=12$
a. Graph both equations in the same coordinate plane.
b. Do the two lines intersect? Explain.
c. What is the solution of the puzzle?
d. Use the equation $y=2 x+4$ to complete the table.

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9	10
\boldsymbol{y}											

e. Does each solution in the table satisfy both clues?
f. What can you conclude? How many solutions does the puzzle have? How can you describe them?

What Is Your Answer?

4. IN YOUR OWN WORDS Can a system of linear equations have no solution? Can a system of linear equations have many solutions? Give examples to support your answers. to complete Exercises 3 and 4 on page 228.

GO Key Idea

Solutions of Systems of Linear Equations

A system of linear equations can have one solution, no solution, or infinitely many solutions.

One solution
The lines intersect.

No solution

Infinitely many solutions The lines are parallel. The lines are the same.

EXAMPLE (1) Solving a System: No Solution

Solve the system. $\quad y=3 x+1$
$y=3 x-3$
Equation 1
Equation 2
Method 1: Solve by graphing.

Study Tip

You can solve some linear systems by inspection. In Example 1, notice you can rewrite the system as

$$
\begin{aligned}
& -3 x+y=1 \\
& -3 x+y=-3
\end{aligned}
$$

This system has no solution because $-3 x+y$ cannot be equal to 1 and -3 at the same time.

Graph each equation. The lines have the same slope and different y-intercepts. So, the lines are parallel. Because parallel lines do not intersect, there is no point that is a solution of both equations.

\therefore So, the system of linear equations has no solution.
Method 2: Solve by substitution.
Substitute $3 x-3$ for y in Equation 1.

$$
\begin{aligned}
y & =3 x+1 & & \text { Equation } 1 \\
3 x-3 & =3 x+1 & & \text { Substitute } 3 x-3 \text { for } y . \\
-3 & =1 \quad X & & \text { Subtract } 3 x \text { from each side. }
\end{aligned}
$$

\therefore The equation $-3=1$ is never true. So, the system of linear equations has no solution.

On Your Own

Now You're Ready

Solve the system of linear equations. Check your solution.

1. $y=-x+3$
$y=-x+5$
2. $y=-5 x-2$
$5 x+y=0$
3. $x=2 y+10$
$2 x+3 y=-1$

EXAMPLE

Rectangle A

Rectangle B

The perimeter of Rectangle A is 36 units. The perimeter of Rectangle B is 108 units. Write and solve a system of linear equations to find the values of x and y.

Perimeter of Rectangle A

$$
\begin{aligned}
2(2 x)+2(4 y) & =36 \\
4 x+8 y & =36 \quad \text { Equation } 1
\end{aligned}
$$

The system is: $4 x+8 y=36$

$$
12 x+24 y=108
$$

Perimeter of Rectangle B

$$
\begin{aligned}
2(6 x)+2(12 y) & =108 \\
12 x+24 y & =108 \quad \text { Equation 2 }
\end{aligned}
$$

Equation 1
Equation 2
Method 1: Solve by graphing.
Graph each equation.
The lines have the same slope and the same y-intercept. So, the lines are the same.
\therefore In this context, x and y must be positive. Because the lines are the same, all the points on the line in Quadrant I are solutions of both
 equations. So, the system of linear equations has infinitely many solutions.

Method 2: Solve by elimination.
Multiply Equation 1 by 3 and subtract the equations.
$4 x+8 y=36 \quad$ Multiply by $3 . \quad 12 x+24 y=108 \quad$ Revised Equation 1
$12 x+24 y=108$

$$
\begin{equation*}
\frac{12 x+24 y=108}{0=0} \tag{Equation 2}
\end{equation*}
$$

Subtract.
\therefore The equation $0=0$ is always true. In this context, x and y must be positive. So, the solutions are all the points on the line $4 x+8 y=36$ in Quadrant I. The system of linear equations has infinitely many solutions.

On Your Own

Now You're Ready
 Exercises 11-13

Solve the system of linear equations. Check your solution.
4. $x+y=3$
$x-y=-3$
5. $2 x+y=5$
$4 x+2 y=0$
6. $2 x-4 y=10$ $-12 x+24 y=-60$
7. WHAT IF? What happens to the solution in Example 2 if the perimeter of Rectangle A is 54 units? Explain.

Vocabulary and Concept Check

1. WRITING Describe the difference between the graph of a system of linear equations that has no solution and the graph of a system of linear equations that has infinitely many solutions.
2. REASONING When solving a system of linear equations algebraically, how do you know when the system has no solution? infinitely many solutions?

Practice and Problem Solving

Let x and y be two numbers. Find the solution of the puzzle.
3.
y is $\frac{1}{3}$ more than 4 times the value of x.
The difference of $3 y$ and $12 x$ is 1 .
4. $\frac{1}{2}$ of x plus 3 is equal to y.
x is 6 more than twice the value of y.

Without graphing, determine whether the system of linear equations has one solution, infinitely many solutions, or no solution. Explain your reasoning.
5. $y=5 x-9$
$y=5 x+9$
6. $y=6 x+2$
$y=3 x+1$
7. $y=8 x-2$
$y-8 x=-2$

Solve the system of linear equations. Check your solution.
(1)
8. $y=2 x-2$
$y=2 x+9$
9. $y=3 x+1$
$-x+2 y=-3$
(2) 11. $y=-\frac{1}{6} x+5$
$x+6 y=30$
12. $\frac{1}{3} x+y=1$
$2 x+6 y=6$
10. $y=\frac{\pi}{3} x+\pi$
$-\pi x+3 y=-6 \pi$
13. $-2 x+y=1.3$

$$
2(0.5 x-y)=4.6
$$

14. ERROR ANALYSIS Describe and correct the error in solving the system of linear equations.

$$
\geqslant \begin{aligned}
& y=-2 x+4 \\
& y=-2 x+6
\end{aligned}
$$

The lines have the same slope, so, there are infinitely many solutions.
15. PIG RACE In a pig race, your pig gets a head start of 3 feet and is running at a rate of 2 feet per second. Your friend's pig is also running at a rate of 2 feet per second. A system of linear equations that represents this situation is $y=2 x+3$ and $y=2 x$. Will your friend's pig catch up to your pig? Explain.
16. REASONING One equation in a system of linear equations has a slope of -3 . The other equation has a slope of 4 . How many solutions does the system have? Explain.
17. LOGIC How can you use the slopes and the y-intercepts of equations in a system of linear equations to determine whether the system has one solution, infinitely many solutions, or no solution? Explain your reasoning.

$$
\begin{aligned}
& 4 x+8 y=64 \\
& 8 x+16 y=128
\end{aligned}
$$

18. MONEY You and a friend both work two different jobs. The system of linear equations represents the total earnings for x hours worked at the first job and y hours worked at the second job. Your friend earns twice as much as you.
a. One week, both of you work 4 hours at the first job. How many hours do you and your friend work at the second job?
b. Both of you work the same number of hours at the second job. Compare the number of hours each of you works at the first job.
19. DOWNLOADS You download a digital album for $\$ 10$. Then you and your friend download the same number of individual songs for $\$ 0.99$ each. Write a system of linear equations that represents this situation. Will you and your friend spend the same amount of money? Explain.
20. REASONING Does the system shown always, sometimes, or never have no solution when $a=b ? a \geq b$? $a<b$? Explain your reasoning.

$$
\begin{aligned}
& y=a x+1 \\
& y=b x+4
\end{aligned}
$$

21. SKIING The table shows the number of lift tickets and ski rentals sold to two different groups. Is it possible to determine how much each lift ticket costs? Justify your answer.
22. \quad Precision Find the values of a and b so the system shown has the solution (2,3). Does the system have any other solutions? Explain.

Group	1	2
Number of Lift Tickets	36	24
Number of Ski Rentals	18	12
Total Cost (dollars)	684	456

$$
\begin{aligned}
12 x-2 b y & =12 \\
3 a x-b y & =6
\end{aligned}
$$

Fair Game Review what you learned in previous grades \& lessons

Write an equation of the line that passes through the given points. (Section 4.7)
23. $(0,0),(2,6)$
24. $(0,-3),(3,3)$
25. $(-6,5),(0,2)$
26. MULTIPLE CHOICE What is the solution of $-2(y+5) \leq 16$? (Skills Review Handbook)
(A) $y \leq-13$
(B) $y \geq-13$
(C) $y \leq-3$
(D) $y \geq-3$

